15 research outputs found

    Quantum Nature of Light Measured With a Single Detector

    Full text link
    We realized the most fundamental quantum optical experiment to prove the non-classical character of light: Only a single quantum emitter and a single superconducting nanowire detector were used. A particular appeal of our experiment is its elegance and simplicity. Yet its results unambiguously enforce a quantum theory for light. Previous experiments relied on more complex setups, such as the Hanbury-Brown-Twiss configuration, where a beam splitter directs light to two photodetectors, giving the false impression that the beam splitter is required. Our work results in a major simplification of the widely used photon-correlation techniques with applications ranging from quantum information processing to single-molecule detection.Comment: 7 page

    Integration of colloidal PbS/CdS quantum dots with plasmonic antennas and superconducting detectors on a silicon nitride photonic platform

    No full text
    Single-photon sources and detectors are indispensable building blocks for integrated quantum photonics, a research field that is seeing ever increasing interest for numerous applications. In this work, we implemented essential components for a quantum key distribution transceiver on a single photonic chip. Plasmonic antennas on top of silicon nitride waveguides provide Purcell enhancement with a concurrent increase of the count rate, speeding up the microsecond radiative lifetime of IR-emitting colloidal PbS/CdS quantum dots (QDs). The use of low-fluorescence silicon nitride, with a waveguide loss smaller than 1 dB/cm, made it possible to implement high extinction ratio optical filters and low insertion loss spectrometers. Waveguide-coupled superconducting nanowire single-photon detectors allow for low time-jitter single-photon detection. To showcase the performance of the components, we demonstrate on-chip lifetime spectroscopy of PbS/CdS QDs. The method developed in this paper is predicted to scale down to single QDs, and newly developed emitters can be readily integrated on the chip-based platform

    Integration of Colloidal PbS/CdS Quantum Dots with Plasmonic Antennas and Superconducting Detectors on a Silicon Nitride Photonic Platform

    No full text
    Single-photon sources and detectors are indispensable building blocks for integrated quantum photonics, a research field that is seeing ever increasing interest for numerous applications. In this work, we implemented essential components for a quantum key distribution transceiver on a single photonic chip. Plasmonic antennas on top of silicon nitride waveguides provide Purcell enhancement with a concurrent increase of the count rate, speeding up the microsecond radiative lifetime of IR-emitting colloidal PbS/CdS quantum dots (QDs). The use of low-fluorescence silicon nitride, with a waveguide loss smaller than 1 dB/cm, made it possible to implement high extinction ratio optical filters and low insertion loss spectrometers. Waveguide-coupled superconducting nanowire single-photon detectors allow for low time-jitter single-photon detection. To showcase the performance of the components, we demonstrate on-chip lifetime spectroscopy of PbS/CdS QDs. The method developed in this paper is predicted to scale down to single QDs, and newly developed emitters can be readily integrated on the chip-based platform.Accepted Author ManuscriptImPhys/Optic

    A new method to fuzzy modeling and its application in performance evaluation of tenants in incubators

    Full text link
    As we know fuzzy modeling is one of the most powerful techniques to extract experts’ knowledge in the form of fuzzy if-then rules. In this research work, a new method to fuzzy modeling is proposed in which the main goal is to construct a fuzzy rule-base of the type of Mamdani. In the proposed method, fuzzy c-means (FCM) clustering is used for structure identification and two optimization problems are used for parameter identification. The proposed method is used to simulate experts’ knowledge for performance evaluation of tenants in incubators. The authors have implemented their proposed method in a real numerical example successfully

    Strain-Tunable Quantum Integrated Photonics

    No full text
    Semiconductor quantum dots are crucial parts of the photonic quantum technology toolbox because they show excellent single-photon emission properties in addition to their potential as solid-state qubits. Recently, there has been an increasing effort to deterministically integrate single semiconductor quantum dots into complex photonic circuits. Despite rapid progress in the field, it remains challenging to manipulate the optical properties of waveguide-integrated quantum emitters in a deterministic, reversible, and nonintrusive manner. Here we demonstrate a new class of hybrid quantum photonic circuits combining III–V semiconductors, silicon nitride, and piezoelectric crystals. Using a combination of bottom-up, top-down, and nanomanipulation techniques, we realize strain tuning of a selected, waveguide-integrated, quantum emitter and a planar integrated optical resonator. Our findings are an important step toward realizing reconfigurable quantum-integrated photonics, with full control over the quantum sources and the photonic circuit.ISSN:1530-6984ISSN:1530-699
    corecore