117 research outputs found

    Evaluation of host effects on ectomycorrhizal fungal community compositions in a forested landscape in northern Japan

    Get PDF
    Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.4853145.Community compositions of ectomycorrhizal (ECM) fungi are similar within the same host taxa. However, careful interpretation is required to determine whether the combination of ECM fungi and plants is explained by the host preference for ECM fungi, or by the influence of neighbouring heterospecific hosts. In the present study, we aimed to evaluate the effects of host species on the ECM community compositions in a forested landscape (approx. 10 km) where monodominant forest stands of six ECM host species belonging to three families were patchily distributed. A total of 180 ECM operational taxonomic units (OTUs) were detected with DNA metabarcoding. Quantitative multivariate analyses revealed that the ECM community compositions were primarily structured by host species and families, regardless of the soil environments and spatial arrangements of the sampling plots. In addition, 38 ECM OTUs were only detected from particular host tree species. Furthermore, the neighbouring plots harboured similar fungal compositions, although the host species were different. The relative effect of the spatial factors on the ECM compositions was weaker than that of host species. Our results suggest that the host preference for ECM fungi is the primary determinant of ECM fungal compositions in the forested landscape

    Tumor-targeted fluorescence labeling systems for cancer diagnosis and treatment

    Get PDF
    Conventional imaging techniques are available for clinical identification of tumor sites. However, detecting metastatic tumor cells that are spreading from primary tumor sites using conventional imaging techniques remains difficult. In contrast, fluorescence-based labeling systems are useful tools for detecting tumor cells at the single-cell level in cancer research. The ability to detect fluorescent-labeled tumor cells enables investigations of the biodistribution of tumor cells for the diagnosis and treatment of cancer. For example, the presence of fluorescent tumor cells in the peripheral blood of cancer patients is a predictive biomarker for early diagnosis of distant metastasis. The elimination of fluorescent tumor cells without damaging normal tissues is ideal for minimally invasive treatment of cancer. To capture fluorescent tumor cells within normal tissues, however, tumor-specific activated target molecules are needed. This review focuses on recent advances in tumor-targeted fluorescence labeling systems, in which indirect reporter labeling using tumor-specific promoters is applied to fluorescence labeling of tumor cells for the diagnosis and treatment of cancer. Telomerase promoter-dependent fluorescence labeling using replication-competent viral vectors produces fluorescent proteins that can be used to detect and eliminate telomerase-positive tumor cells. Tissue-specific promoter-dependent fluorescence labeling enables identification of specific tumor cells. Vimentin promoter-dependent fluorescence labeling is a useful tool for identifying tumor cells that undergo epithelial-mesenchymal transition (EMT). The evaluation of tumor cells undergoing EMT is important for accurately assessing metastatic potential. Thus, tumor-targeted fluorescence labeling systems represent novel platforms that enable the capture of tumor cells for the diagnosis and treatment of cancer

    Tumor innate immunity primed by specific interferon-stimulated endogenous retroviruses.

    Get PDF
    Mesenchymal tumor subpopulations secrete pro-tumorigenic cytokines and promote treatment resistance1-4. This phenomenon has been implicated in chemorefractory small cell lung cancer and resistance to targeted therapies5-8, but remains incompletely defined. Here, we identify a subclass of endogenous retroviruses (ERVs) that engages innate immune signaling in these cells. Stimulated 3 prime antisense retroviral coding sequences (SPARCS) are oriented inversely in 3' untranslated regions of specific genes enriched for regulation by STAT1 and EZH2. Derepression of these loci results in double-stranded RNA generation following IFN-γ exposure due to bi-directional transcription from the STAT1-activated gene promoter and the 5' long terminal repeat of the antisense ERV. Engagement of MAVS and STING activates downstream TBK1, IRF3, and STAT1 signaling, sustaining a positive feedback loop. SPARCS induction in human tumors is tightly associated with major histocompatibility complex class 1 expression, mesenchymal markers, and downregulation of chromatin modifying enzymes, including EZH2. Analysis of cell lines with high inducible SPARCS expression reveals strong association with an AXL/MET-positive mesenchymal cell state. While SPARCS-high tumors are immune infiltrated, they also exhibit multiple features of an immune-suppressed microenviroment. Together, these data unveil a subclass of ERVs whose derepression triggers pathologic innate immune signaling in cancer, with important implications for cancer immunotherapy
    corecore