23 research outputs found

    Multivalued memory effects in electronic phase-change manganites controlled by Joule heating

    Full text link
    Non-volatile multivalued memory effects caused by magnetic fields, currents, and voltage pulses are studied in Nd_{0.65}Ca_{0.35}MnO_3 and (Nd_{1-y}Sm_{y})_{0.5}Sr_{0.5}MnO_3 (y=0.75) single crystals in the hysteretic region between ferromagnetic metallic and charge-ordered insulating states. The current/voltage effects observed in this study are explained by the self-heating effect, which enable us to control the colossal electroresistance effects. This thermal-cycle induced switching between electronic solid and liquid states can be regarded as electronic version of atomic crystal/amorphous transitions in phase-change chalcogenides.Comment: 5 pages, 4 figures. to appear in Phys. Rev.

    Development of an open source Debris Flow Simulator for “Sabo” (DFSS)

    Get PDF
    We report the development of an open source “Debris Flow Simulator for Sabo” (DFSS). DFSS consists of three models corresponding to three geomorphological regions (mountain hillside slopes, mountain-to-plain river channels, and lower plains). A 2D rainfall-runoff (RR) model is adopted mainly for hillside slopes; a 1D debris flow runoff (DR) model is used for the river channel; and a 2D debris flow flooding or inundation (DF) model is adopted for the lower plains. These models are weakly coupled such that one can modify the overall model to fit diverse problems. In this article, we provide a detailed introduction to the models comprising DFSS, and demonstrate its utility

    Validity of the Livengood & Wu correlation and theoretical development of an alternative procedure to predict ignition delays under variable thermodynamic conditions

    Full text link
    A theoretical study about the autoignition phenomenon has been performed in this article. The hypotheses of the Livengood & Wu integral have been revised, concluding that the critical concentration of chain carriers is not constant. However, its validity under engine conditions has been justified. Expressions to characterize the temporal evolution of the concentration of chain carriers, as well as the critical concentration of active radicals and the ignition delay, have been obtained starting from the Glassman s model. A new expression to predict ignition delays under variable conditions has been developed and the results obtained with this expression have been compared with those obtained from the Livengood & Wu integral. Two different fuels have been studied: isooctane (as a gasoline surrogate) and n-heptane (as a diesel fuel surrogate). The new method to predict ignition delays under variable conditions has shown, in general, better results than the classic Livengood & Wu integral, but the inability of the Glassman s model to reproduce the negative temperature coefficient regime should be improved in future works.The authors would like to thank different members of the CMT-Motores Termicos team of the Universitat Politecnica de Valencia for their contribution to this work. The authors would also like to thank the Spanish Ministry of Education for financing the PhD. Studies of Dario Lopez-Pintor (Grant FPU13/02329). This work was partly founded by the Generalitat Valenciana, Project PROMETEOII/2014/043.k.Desantes Fernández, JM.; López Sánchez, JJ.; Molina Alcaide, SA.; López Pintor, D. (2015). Validity of the Livengood & Wu correlation and theoretical development of an alternative procedure to predict ignition delays under variable thermodynamic conditions. Energy Conversion and Management. 105:836-847. https://doi.org/10.1016/j.enconman.2015.08.013S83684710
    corecore