186 research outputs found

    GC-rich配列を介したUPF1依存的mRNA分解メカニズムの解明

    Get PDF
    学位の種別: 課程博士審査委員会委員 : (主査)東京大学教授 秋光 信佳, 東京大学教授 三浦 正幸, 東京大学教授 村田 茂穂, 東京大学教授 堀 昌平, 東京大学教授 富田 泰輔University of Tokyo(東京大学

    TRPV1-expressing primary afferents generate behavioral responses to pruritogens via multiple mechanisms

    Get PDF
    The mechanisms that generate itch are poorly understood at both the molecular and cellular levels despite its clinical importance. To explore the peripheral neuronal mechanisms underlying itch, we assessed the behavioral responses (scratching) produced by s.c. injection of various pruritogens in PLCβ3- or TRPV1-deficient mice. We provide evidence that at least 3 different molecular pathways contribute to the transduction of itch responses to different pruritogens: 1) histamine requires the function of both PLCβ3 and the TRPV1 channel; 2) serotonin, or a selective agonist, α-methyl-serotonin (α-Me-5-HT), requires the presence of PLCβ3 but not TRPV1, and 3) endothelin-1 (ET-1) does not require either PLCβ3 or TRPV1. To determine whether the activity of these molecules is represented in a particular subpopulation of sensory neurons, we examined the behavioral consequences of selectively eliminating 2 nonoverlapping subsets of nociceptors. The genetic ablation of MrgprD^+ neurons that represent ≈90% of cutaneous nonpeptidergic neurons did not affect the scratching responses to a number of pruritogens. In contrast, chemical ablation of the central branch of TRPV1+ nociceptors led to a significant behavioral deficit for pruritogens, including α-Me-5-HT and ET-1, that is, the TRPV1-expressing nociceptor was required, whether or not TRPV1 itself was essential. Thus, TRPV1 neurons are equipped with multiple signaling mechanisms that respond to different pruritogens. Some of these require TRPV1 function; others use alternate signal transduction pathways

    Immunohistochemical investigation of nerve distribution in mature parotid and submandibular glands of rats with a liquid diet

    Get PDF
    Background: Although feeding with a liquid diet does not affect the growth of rat submandibular glands, it inhibits the growth of rat parotid glands during growth periods. In these growth-inhibited parotid glands, the growth of parasympathetic nerves is also suppressed. Meanwhile, the mature parotid glands of animals maintained on a liquid diet become morphologically and functionally atrophic, however, there is no effect of a liquid diet on mature submandibular glands. The objective of the present study was to clarify whether the nerve distribution in the mature salivary glands of rats was affected by a liquid diet. Materials and methods: Seven-week-old male Wistar rats were used in this study. Half of the rats were kept on a pellet diet, and half were kept on a liquid diet, for 3, 7, 14, or 21 days. All rats were euthanised by isoflurane at each endpoint. Then, the parotid and submandibular glands were removed, frozen in liquid nitrogen, cryosectioned, and stained with antibodies against protein gene product 9.5 (PGP 9.5; general nerve marker), tyrosine hydroxylase (TH; sympathetic nerve marker), or neuronal nitric oxide synthase (nNOS; parasympathetic nerve marker). Results: In parotid and submandibular glands of the pellet diet group, PGP 9.5- and TH-like immunoreactivity were seen around acini and ducts, and nNOS-like immunoreactivity was lower than PGP 9.5- and TH-like immunoreactivity. In the parotid glands of the liquid diet group, similar immunoreactivities were seen throughout the experimental period. The distribution of antibody labelling in the submandibular glands of the liquid diet group was similar to that of the pellet diet group and remained unchanged during the experimental period. Conclusions: The present study demonstrated no regressive effects of a liquid diet on the distribution of sympathetic or parasympathetic nerves in mature parotid glands and submandibular glands. This differed from inhibitory effects on the growth of parotid glands seen during growth periods

    Pirt, a TRPV1 Modulator, Is Required for Histamine-Dependent and -Independent Itch

    Get PDF
    Itch, or pruritus, is an important clinical problem whose molecular basis has yet to be understood. Recent work has begun to identify genes that contribute to detecting itch at the molecular level. Here we show that Pirt, known to play a vital part in sensing pain through modulation of the transient receptor potential vanilloid 1 (TRPV1) channel, is also necessary for proper itch sensation. Pirt−/− mice exhibit deficits in cellular and behavioral responses to various itch-inducing compounds, or pruritogens. Pirt contributes to both histaminergic and nonhistaminergic itch and, crucially, is involved in forms of itch that are both TRPV1-dependent and -independent. Our findings demonstrate that the function of Pirt extends beyond nociception via TRPV1 regulation to its role as a critical component in several itch signaling pathways

    CGRPα-Expressing Sensory Neurons Respond to Stimuli that Evoke Sensations of Pain and Itch

    Get PDF
    Calcitonin gene-related peptide (CGRPα, encoded by Calca) is a classic marker of nociceptive dorsal root ganglia (DRG) neurons. Despite years of research, it is unclear what stimuli these neurons detect in vitro or in vivo. To facilitate functional studies of these neurons, we genetically targeted an axonal tracer (farnesylated enhanced green fluorescent protein; GFP) and a LoxP-stopped cell ablation construct (human diphtheria toxin receptor; DTR) to the Calca locus. In culture, 10–50% (depending on ligand) of all CGRPα-GFP-positive (+) neurons responded to capsaicin, mustard oil, menthol, acidic pH, ATP, and pruritogens (histamine and chloroquine), suggesting a role for peptidergic neurons in detecting noxious stimuli and itch. In contrast, few (2.2±1.3%) CGRPα-GFP+ neurons responded to the TRPM8-selective cooling agent icilin. In adult mice, CGRPα-GFP+ cell bodies were located in the DRG, spinal cord (motor neurons and dorsal horn neurons), brain and thyroid—reproducibly marking all cell types known to express Calca. Half of all CGRPα-GFP+ DRG neurons expressed TRPV1, ∼25% expressed neurofilament-200, <10% contained nonpeptidergic markers (IB4 and Prostatic acid phosphatase) and almost none (<1%) expressed TRPM8. CGRPα-GFP+ neurons innervated the dorsal spinal cord and innervated cutaneous and visceral tissues. This included nerve endings in the epidermis and on guard hairs. Our study provides direct evidence that CGRPα+ DRG neurons respond to agonists that evoke pain and itch and constitute a sensory circuit that is largely distinct from nonpeptidergic circuits and TRPM8+/cool temperature circuits. In future studies, it should be possible to conditionally ablate CGRPα-expressing neurons to evaluate sensory and non-sensory functions for these neurons

    SRSF3 promotes pluripotency through Nanog mRNA export and coordination of the pluripotency gene expression program

    Get PDF
    The establishment and maintenance of pluripotency depend on precise coordination of gene expression. We establish serine-arginine-rich splicing factor 3 (SRSF3) as an essential regulator of RNAs encoding key components of the mouse pluripotency circuitry, SRSF3 ablation resulting in the loss of pluripotency and its overexpression enhancing reprogramming. Strikingly, SRSF3 binds to the core pluripotency transcription factor Nanog mRNA to facilitate its nucleo-cytoplasmic export independent of splicing. In the absence of SRSF3 binding, Nanog mRNA is sequestered in the nucleus and protein levels are severely downregulated. Moreover, SRSF3 controls the alternative splicing of the export factor Nxf1 and RNA regulators with established roles in pluripotency, and the steady-state levels of mRNAs encoding chromatin modifiers. Our investigation links molecular events to cellular functions by demonstrating how SRSF3 regulates the pluripotency genes and uncovers SRSF3-RNA interactions as a critical means to coordinate gene expression during reprogramming, stem cell self-renewal and early development.Madara Ratnadiwakara, Stuart K Archer, Craig I Dent, Igor Ruiz De Los Mozos, Traude H Beilharz, Anja S Knaupp, Christian M Nefzger, Jose M Polo, Minna-Liisa Ank

    IRAV

    No full text
    corecore