54 research outputs found

    Mutational and Bioinformatic Analysis of Haloarchaeal Lipobox-Containing Proteins

    Get PDF
    A conserved lipid-modified cysteine found in a protein motif commonly referred to as a lipobox mediates the membrane anchoring of a subset of proteins transported across the bacterial cytoplasmic membrane via the Sec pathway. Sequenced haloarchaeal genomes encode many putative lipoproteins and recent studies have confirmed the importance of the conserved lipobox cysteine for signal peptide processing of three lipobox-containing proteins in the model archaeon Haloferax volcanii. We have extended these in vivo analyses to additional Hfx. volcanii substrates, supporting our previous in silico predictions and confirming the diversity of predicted Hfx. volcanii lipoproteins. Moreover, using extensive comparative secretome analyses, we identified genes encodining putative lipoproteins across a wide range of archaeal species. While our in silico analyses, supported by in vivo data, indicate that most haloarchaeal lipoproteins are Tat substrates, these analyses also predict that many crenarchaeal species lack lipoproteins altogether and that other archaea, such as nonhalophilic euryarchaeal species, transport lipoproteins via the Sec pathway. To facilitate the identification of genes that encode potential haloarchaeal Tat-lipoproteins, we have developed TatLipo, a bioinformatic tool designed to detect lipoboxes in haloarchaeal Tat signal peptides. Our results provide a strong foundation for future studies aimed at identifying components of the archaeal lipoprotein biogenesis pathway

    iRsp1095: A genome-scale reconstruction of the Rhodobacter sphaeroides metabolic network

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Rhodobacter sphaeroides </it>is one of the best studied purple non-sulfur photosynthetic bacteria and serves as an excellent model for the study of photosynthesis and the metabolic capabilities of this and related facultative organisms. The ability of <it>R. sphaeroides </it>to produce hydrogen (H<sub>2</sub>), polyhydroxybutyrate (PHB) or other hydrocarbons, as well as its ability to utilize atmospheric carbon dioxide (CO<sub>2</sub>) as a carbon source under defined conditions, make it an excellent candidate for use in a wide variety of biotechnological applications. A genome-level understanding of its metabolic capabilities should help realize this biotechnological potential.</p> <p>Results</p> <p>Here we present a genome-scale metabolic network model for <it>R. sphaeroides </it>strain 2.4.1, designated iRsp1095, consisting of 1,095 genes, 796 metabolites and 1158 reactions, including <it>R. sphaeroides</it>-specific biomass reactions developed in this study. Constraint-based analysis showed that iRsp1095 agreed well with experimental observations when modeling growth under respiratory and phototrophic conditions. Genes essential for phototrophic growth were predicted by single gene deletion analysis. During pathway-level analyses of <it>R. sphaeroides </it>metabolism, an alternative route for CO<sub>2 </sub>assimilation was identified. Evaluation of photoheterotrophic H<sub>2 </sub>production using iRsp1095 indicated that maximal yield would be obtained from growing cells, with this predicted maximum ~50% higher than that observed experimentally from wild type cells. Competing pathways that might prevent the achievement of this theoretical maximum were identified to guide future genetic studies.</p> <p>Conclusions</p> <p>iRsp1095 provides a robust framework for future metabolic engineering efforts to optimize the solar- and nutrient-powered production of biofuels and other valuable products by <it>R. sphaeroides </it>and closely related organisms.</p

    HausaNLP at SemEval-2023 Task 12: Leveraging African Low Resource TweetData for Sentiment Analysis

    Full text link
    We present the findings of SemEval-2023 Task 12, a shared task on sentiment analysis for low-resource African languages using Twitter dataset. The task featured three subtasks; subtask A is monolingual sentiment classification with 12 tracks which are all monolingual languages, subtask B is multilingual sentiment classification using the tracks in subtask A and subtask C is a zero-shot sentiment classification. We present the results and findings of subtask A, subtask B and subtask C. We also release the code on github. Our goal is to leverage low-resource tweet data using pre-trained Afro-xlmr-large, AfriBERTa-Large, Bert-base-arabic-camelbert-da-sentiment (Arabic-camelbert), Multilingual-BERT (mBERT) and BERT models for sentiment analysis of 14 African languages. The datasets for these subtasks consists of a gold standard multi-class labeled Twitter datasets from these languages. Our results demonstrate that Afro-xlmr-large model performed better compared to the other models in most of the languages datasets. Similarly, Nigerian languages: Hausa, Igbo, and Yoruba achieved better performance compared to other languages and this can be attributed to the higher volume of data present in the languages

    Identification of Surprisingly Diverse Type IV Pili, across a Broad Range of Gram-Positive Bacteria

    Get PDF
    In Gram-negative bacteria, type IV pili (TFP) have long been known to play important roles in such diverse biological phenomena as surface adhesion, motility, and DNA transfer, with significant consequences for pathogenicity. More recently it became apparent that Gram-positive bacteria also express type IV pili; however, little is known about the diversity and abundance of these structures in Gram-positives. Computational tools for automated identification of type IV pilins are not currently available.To assess TFP diversity in Gram-positive bacteria and facilitate pilin identification, we compiled a comprehensive list of putative Gram-positive pilins encoded by operons containing highly conserved pilus biosynthetic genes (pilB, pilC). A surprisingly large number of species were found to contain multiple TFP operons (pil, com and/or tad). The N-terminal sequences of predicted pilins were exploited to develop PilFind, a rule-based algorithm for genome-wide identification of otherwise poorly conserved type IV pilins in any species, regardless of their association with TFP biosynthetic operons (http://signalfind.org). Using PilFind to scan 53 Gram-positive genomes (encoding >187,000 proteins), we identified 286 candidate pilins, including 214 in operons containing TFP biosynthetic genes (TBG+ operons). Although trained on Gram-positive pilins, PilFind identified 55 of 58 manually curated Gram-negative pilins in TBG+ operons, as well as 53 additional pilin candidates in operons lacking biosynthetic genes in ten species (>38,000 proteins), including 27 of 29 experimentally verified pilins. False positive rates appear to be low, as PilFind predicted only four pilin candidates in eleven bacterial species (>13,000 proteins) lacking TFP biosynthetic genes.We have shown that Gram-positive bacteria contain a highly diverse set of type IV pili. PilFind can be an invaluable tool to study bacterial cellular processes known to involve type IV pilus-like structures. Its use in combination with other currently available computational tools should improve the accuracy of predicting the subcellular localization of bacterial proteins

    An Integrated Approach to Reconstructing Genome-scale Transcriptional Regulatory Networks

    No full text
    <p>This fileset contains the code and sample datasets to run the workflow described in "An Integrated Approach to Reconstructing Genome-scale Transcriptional Regulatory Networks" by Saheed Imam, Daniel R. Noguera and Timothy J. Donohue (Plos Comp bio). The workflow enables the reconstruction of TRNs using comparative genomics and gene expression analyses.</p> <p>The files provided here include example data for E. coli to facilitate the use of the workflow for any organsim of interest.</p> <p> </p> <p>This fileset also contains just the code without any associated datasets (Integrate_v1.0_clean.zip)</p

    An Integrated Approach to Reconstructing Genome-scale Transcriptional Regulatory Networks

    No full text
    <p>This publication contains the code and sample datasets to run the workflow described in "An Integrated Approach to Reconstructing Genome-scale Transcriptional Regulatory Networks" by Saheed Imam, Daniel R. Noguera and Timothy J. Donohue (Plos Comp bio). The workflow enables the reconstruction of TRNs using comparative genomics and gene expression analyses.</p> <p>The files provided here include example data for <em>E. coli</em> to facilitate the use of the workflow for any organsim of interest.</p> <p>See http://dx.doi.org/10.6084/m9.figshare.1279163 for the code without the E. coli dataset included and for future updates.</p

    Haloferax volcanii Flagella Are Required for Motility but Are Not Involved in PibD-Dependent Surface Adhesion▿

    No full text
    Although the genome of Haloferax volcanii contains genes (flgA1-flgA2) that encode flagellins and others that encode proteins involved in flagellar assembly, previous reports have concluded that H. volcanii is nonmotile. Contrary to these reports, we have now identified conditions under which H. volcanii is motile. Moreover, we have determined that an H. volcanii deletion mutant lacking flagellin genes is not motile. However, unlike flagella characterized in other prokaryotes, including other archaea, the H. volcanii flagella do not appear to play a significant role in surface adhesion. While flagella often play similar functional roles in bacteria and archaea, the processes involved in the biosynthesis of archaeal flagella do not resemble those involved in assembling bacterial flagella but, instead, are similar to those involved in producing bacterial type IV pili. Consistent with this observation, we have determined that, in addition to disrupting preflagellin processing, deleting pibD, which encodes the preflagellin peptidase, prevents the maturation of other H. volcanii type IV pilin-like proteins. Moreover, in addition to abolishing swimming motility, and unlike the flgA1-flgA2 deletion, deleting pibD eliminates the ability of H. volcanii to adhere to a glass surface, indicating that a nonflagellar type IV pilus-like structure plays a critical role in H. volcanii surface adhesion

    Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    No full text
    <div><p>Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in <i>Rhodobacter sphaeroides</i>. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.</p></div
    corecore