55 research outputs found

    Verified partial eigenvalue computations using contour integrals for Hermitian generalized eigenproblems

    Full text link
    We propose a verified computation method for partial eigenvalues of a Hermitian generalized eigenproblem. The block Sakurai-Sugiura Hankel method, a contour integral-type eigensolver, can reduce a given eigenproblem into a generalized eigenproblem of block Hankel matrices whose entries consist of complex moments. In this study, we evaluate all errors in computing the complex moments. We derive a truncation error bound of the quadrature. Then, we take numerical errors of the quadrature into account and rigorously enclose the entries of the block Hankel matrices. Each quadrature point gives rise to a linear system, and its structure enables us to develop an efficient technique to verify the approximate solution. Numerical experiments show that the proposed method outperforms a standard method and infer that the proposed method is potentially efficient in parallel.Comment: 15 pages, 4 figures, 1 tabl

    Complex moment-based methods for differential eigenvalue problems

    Full text link
    This paper considers computing partial eigenpairs of differential eigenvalue problems (DEPs) such that eigenvalues are in a certain region on the complex plane. Recently, based on a "solve-then-discretize" paradigm, an operator analogue of the FEAST method has been proposed for DEPs without discretization of the coefficient operators. Compared to conventional "discretize-then-solve" approaches that discretize the operators and solve the resulting matrix problem, the operator analogue of FEAST exhibits much higher accuracy; however, it involves solving a large number of ordinary differential equations (ODEs). In this paper, to reduce the computational costs, we propose operation analogues of Sakurai-Sugiura-type complex moment-based eigensolvers for DEPs using higher-order complex moments and analyze the error bound of the proposed methods. We show that the number of ODEs to be solved can be reduced by a factor of the degree of complex moments without degrading accuracy, which is verified by numerical results. Numerical results demonstrate that the proposed methods are over five times faster compared with the operator analogue of FEAST for several DEPs while maintaining almost the same high accuracy. This study is expected to promote the "solve-then-discretize" paradigm for solving DEPs and contribute to faster and more accurate solutions in real-world applications.Comment: 26 pages, 9 figure

    Contour integral method for obtaining the self-energy matrices of electrodes in electron transport calculations

    Full text link
    We propose an efficient computational method for evaluating the self-energy matrices of electrodes to study ballistic electron transport properties in nanoscale systems. To reduce the high computational cost incurred in large systems, a contour integral eigensolver based on the Sakurai-Sugiura method combined with the shifted biconjugate gradient method is developed to solve exponential-type eigenvalue problem for complex wave vectors. A remarkable feature of the proposed algorithm is that the numerical procedure is very similar to that of conventional band structure calculations. We implement the developed method in the framework of the real-space higher-order finite difference scheme with nonlocal pseudopotentials. Numerical tests for a wide variety of materials validate the robustness, accuracy, and efficiency of the proposed method. As an illustration of the method, we present the electron transport property of the free-standing silicene with the line defect originating from the reversed buckled phases.Comment: 36 pages, 13 figures, 2 table
    • …
    corecore