28 research outputs found

    Divergent Dynamics and Functions of ERK MAP Kinase Signaling in Development, Homeostasis and Cancer: Lessons from Fluorescent Bioimaging

    Get PDF
    The extracellular signal-regulated kinase (ERK) signaling pathway regulates a variety of biological processes including cell proliferation, survival, and differentiation. Since ERK activation promotes proliferation of many types of cells, its deregulated/constitutive activation is among general mechanisms for cancer. Recent advances in bioimaging techniques have enabled to visualize ERK activity in real-time at the single-cell level. Emerging evidence from such approaches suggests unexpectedly complex spatiotemporal dynamics of ERK activity in living cells and animals and their crucial roles in determining cellular responses. In this review, we discuss how ERK activity dynamics are regulated and how they affect biological processes including cell fate decisions, cell migration, embryonic development, tissue homeostasis, and tumorigenesis

    Dynamic ERK signaling regulation in intestinal tumorigenesis

    No full text
    Extracellular signal-regulated kinase (ERK) plays a critical role in tissue homeostasis and tumorigenesis. By utilizing live imaging approaches, we recently uncovered ERK activity dynamics in the intestinal epithelium. Notably, we showed that ERK activity dynamics are defined by composite regulation from two distinct upstream receptors, and alteration of their functional balance underlies tumor cell-specific traits. Here, we discuss these findings

    HOXA5 Counteracts Stem Cell Traits by Inhibiting Wnt Signaling in Colorectal Cancer

    No full text
    Hierarchical organization of tissues relies on stem cells, which either self-renew or produce committed progenitors predestined for lineage differentiation. Here we identify HOXA5 as an important repressor of intestinal stem cell fate in vivo and identify a reciprocal feedback between HOXA5 and Wnt signaling. HOXA5 is suppressed by the Wnt pathway to maintain stemness and becomes active only outside the intestinal crypt where it inhibits Wnt signaling to enforce differentiation. In colon cancer, HOXA5 is downregulated, and its re-expression induces loss of the cancer stem cell phenotype, preventing tumor progression and metastasis. Tumor regression by HOXA5 induction can be triggered by retinoids, which represent tangible means to treat colon cancer by eliminating cancer stem cells

    Biomaterials for intestinal organoid technology and personalized disease modelling

    No full text
    Recent advances in intestinal organoid technologies have paved the way for in vitro recapitulation of the homeostatic renewal of adult tissues, tissue or organ morphogenesis during development, and pathogenesis of many disorders. In vitro modelling of individual patient diseases using organoid systems have been considered key in establishing rational design of personalized treatment strategies and in improving therapeutic outcomes. In addition, the transplantation of organoids into diseased tissues represents a novel approach to treat currently incurable diseases. Emerging evidence from intensive studies suggests that organoid systems’ development and functional maturation depends on the presence of an extracellular matrix with suitable biophysical properties, where advanced synthetic hydrogels open new avenues for theoretical control of organoid phenotypes and potential applications of organoids in therapeutic purposes. In this review, we discuss the status, applications, challenges and perspectives of intestinal organoid systems emphasising on hydrogels and their properties suitable for intestinal organoid culture. We provide an overview of hydrogels used for intestinal organoid culture and key factors regulating their biological activity. The comparison of different hydrogels would be a theoretical basis for establishing design principles of synthetic niches directing intestinal cell fates and functions

    Antagonistic Interactions between Extracellular Signal-Regulated Kinase Mitogen-Activated Protein Kinase and Retinoic Acid Receptor Signaling in Colorectal Cancer Cells

    Get PDF
    Deregulated activation of RAS/extracellular signal-regulated kinase (ERK) signaling and defects in retinoic acid receptor (RAR) signaling are both implicated in many types of cancers. However, interrelationships between these alterations in regulating cancer cell fates have not been fully elucidated. Here, we show that RAS/ERK and RAR signaling pathways antagonistically interact with each other to regulate colorectal cancer (CRC) cell fates. We show that RAR signaling activation promotes spontaneous differentiation of CRC cells, while ERK activation suppresses it. Our microarray analyses identify genes whose expression levels are upregulated by RAR signaling. Notably, one of these genes, MKP4, encoding a member of dual-specificity phosphatases for mitogen-activated protein (MAP) kinases, mediates ERK inactivation upon RAR activation, thereby promoting the differentiation of CRC cells. Moreover, our results also show that RA induction of RAR target genes is suppressed by the ERK pathway activation. This suppression results from the inhibition of RAR transcriptional activity, which is shown to be mediated through an RIP140/histone deacetylase (HDAC)-mediated mechanism. These results identify antagonistic interactions between RAS/ERK and RAR signaling in the cell fate decision of CRC cells and define their underlying molecular mechanisms

    ERK MAP Kinase Signaling Regulates RAR Signaling to Confer Retinoid Resistance on Breast Cancer Cells

    No full text
    Retinoic acid (RA) and its synthetic derivatives, retinoids, have been established as promising anticancer agents based on their ability to regulate cell proliferation and survival. Clinical trials, however, have revealed that cancer cells often acquire resistance to retinoid therapy. Therefore, elucidation of underlying mechanisms of retinoid resistance has been considered key to developing more effective use of retinoids in cancer treatment. In this study, we show that constitutive activation of ERK MAP kinase signaling, which is often caused by oncogenic mutations in RAS or RAF genes, suppresses RA receptor (RAR) signaling in breast cancer cells. We show that activation of the ERK pathway suppresses, whereas its inhibition promotes, RA-induced transcriptional activation of RAR and the resultant upregulation of RAR-target genes in breast cancer cells. Importantly, ERK inhibition potentiates the tumor-suppressive activity of RA in breast cancer cells. Moreover, we also reveal that suppression of RAR signaling and activation of ERK signaling are associated with poor prognoses in breast cancer patients and represent hallmarks of specific subtypes of breast cancers, such as basal-like, HER2-enriched and luminal B. These results indicate that ERK-dependent suppression of RAR activity underlies retinoid resistance and is associated with cancer subtypes and patient prognosis in breast cancers

    ERK MAP Kinase Signaling Regulates RAR Signaling to Confer Retinoid Resistance on Breast Cancer Cells

    No full text
    Simple Summary Breast cancer is among the most common cancers and the leading cause of cancer-related death in women worldwide. Among potential anticancer drugs considered promising in breast cancer treatment are retinoids that act mainly through nuclear retinoic acid receptors (RARs). Clinical trials, however, showed that cancer cells often acquire resistance to retinoid therapy. Therefore, elucidation of underlying mechanisms of retinoid resistance is needed to develop more effective use of retinoids in cancer treatment. In this study, we identify activation of ERK MAP kinase signaling as a novel mechanism for retinoid resistance of breast cancer cells. We show that ERK signaling regulates RAR signaling and inhibition of ERK potentiates tumor-suppressive functions of RARs in breast cancer cells. Moreover, we also reveal that suppression of RAR signaling coincides with activation of ERK signaling in specific subtypes of breast cancers and that these changes are associated with poor prognoses of breast cancer patients. Retinoic acid (RA) and its synthetic derivatives, retinoids, have been established as promising anticancer agents based on their ability to regulate cell proliferation and survival. Clinical trials, however, have revealed that cancer cells often acquire resistance to retinoid therapy. Therefore, elucidation of underlying mechanisms of retinoid resistance has been considered key to developing more effective use of retinoids in cancer treatment. In this study, we show that constitutive activation of ERK MAP kinase signaling, which is often caused by oncogenic mutations in RAS or RAF genes, suppresses RA receptor (RAR) signaling in breast cancer cells. We show that activation of the ERK pathway suppresses, whereas its inhibition promotes, RA-induced transcriptional activation of RAR and the resultant upregulation of RAR-target genes in breast cancer cells. Importantly, ERK inhibition potentiates the tumor-suppressive activity of RA in breast cancer cells. Moreover, we also reveal that suppression of RAR signaling and activation of ERK signaling are associated with poor prognoses in breast cancer patients and represent hallmarks of specific subtypes of breast cancers, such as basal-like, HER2-enriched and luminal B. These results indicate that ERK-dependent suppression of RAR activity underlies retinoid resistance and is associated with cancer subtypes and patient prognosis in breast cancers
    corecore