2,053 research outputs found

    Transition from Band insulator to Bose-Einstein Condensate superfluid and Mott State of Cold Fermi Gases with Multiband Effects in Optical Lattices

    Full text link
    We study two models realized by two-component Fermi gases loaded in optical lattices. We clarify that multi-band effects inevitably caused by the optical lattices generate a rich structure, when the systems crossover from the region of weakly bound molecular bosons to the region of strongly bound atomic bosons. Here the crossover can be controlled by attractive fermion interaction. One of the present models is a case with attractive fermion interaction, where an insulator-superfluid transition takes place. The transition is characterized as the transition between a band insulator and a Bose-Einstein condensate (BEC) superfluid state. Differing from the conventional BCS superfluid transition, this transition shows unconventional properties. In contrast to the one particle excitation gap scaled by the superfluid order parameter in the conventional BCS transition, because of the multi-band effects, a large gap of one-particle density of states is retained all through the transition although the superfluid order grows continuously from zero. A reentrant transition with lowering temperature is another unconventionality. The other model is the case with coexisting attractive and repulsive interactions. Within a mean field treatment, we find a new insulating state, an orbital ordered insulator. This insulator is one candidate for the Mott insulator of molecular bosons and is the first example that the orbital internal degrees of freedom of molecular bosons appears explicitly. Besides the emergence of a new phase, a coexisting phase also appears where superfluidity and an orbital order coexist just by doping holes or particles. The insulating and superfluid particles show differentiation in momentum space as in the high-Tc cuprate superconductors.Comment: 13 pages, 10 figure

    Superconductivity Driven by the Interband Coulomb Interaction and Implications for the Superconducting Mechanism of MgB2

    Full text link
    Superconducting mechanism mediated by interband exchange Coulomb repulsion is examined in an extended two-band Hubbard models with a wide band crossing the Fermi level and coexisting with a narrower band located at moderately lower energy. We apply newly developed path-integral renormalization group method to reliably calculate pairing correlations. The correlation shows marked enhancement at moderate amplitudes of the exchange Coulomb repulsion taken smaller than the on-site repulsion for the narrower band. The pairing symmetry is s-wave while it has unconventional phases with the opposite sign between the order parameters on the two bands, in agreement with the mean-field prediction. Since the band structure of recently discovered superconductor MgB2_2 shares basic similarities with our model, we propose that the present results provide a relevant clue for the understanding of the superconducting mechanism in MgB2_2 as well as in this class of multi-band materials with good metallic conduction in the normal state.Comment: 4pages, 2figure

    Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method

    Full text link
    Filling-control metal-insulator transition on the two-dimensional Hubbard model is investigated by using the correlator projection method, which takes into account momentum dependence of the free energy beyond the dynamical mean-field theory. The phase diagram of metals and Mott insulators is analyzed. Lifshitz transitions occur simultaneously with metal-insulator transitions at large Coulomb repulsion. On the other hand, they are separated each other for lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and metal-insulator transitions appears to show violation of the Luttinger sum rule. Through the metal-insulator transition, quasiparticles retain nonzero renormalization factor and finite quasi-particle weight in the both sides of the transition. This supports that the metal-insulator transition is caused not by the vanishing renormalization factor but by the relative shift of the Fermi level into the Mott gap away from the quasiparticle band, in sharp contrast with the original dynamical mean-field theory. Charge compressibility diverges at the critical end point of the first-order Lifshitz transition at finite temperatures. The origin of the divergence is ascribed to singular momentum dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure

    Superconductivity from Flat Dispersion Designed in Doped Mott Insulators

    Full text link
    Routes to enhance superconducting instability are explored for doped Mott insulators. With the help of insights for criticalities of metal-insulator transitions, geometrical design of lattice structure is proposed to control the instability. A guideline is to explicitly make flat band dispersions near the Fermi level without suppressing two-particle channels. In a one-dimensional model, numerical studies show that our prescription with finite-ranged hoppings realizes large enhancement of spin-gap and pairing dominant regions. We also propose several multi-band systems, where the pairing is driven by intersite Coulomb repulsion.Comment: 4 pages, to be published in Phys. Rev. Let

    On the nature of spectral line broadening in solar coronal dimmings

    Full text link
    We analyze the profiles of iron emission lines observed in solar coronal dimmings associated with coronal mass ejections, using the EUV Imaging Spectrometer on board Hinode. We quantify line profile distortions with empirical coefficients (asymmetry and peakedness) that compare the fitted Gaussian to the data. We find that the apparent line broadenings reported in previous studies are likely to be caused by inhomogeneities of flow velocities along the line of sight, or at scales smaller than the resolution scale, or by velocity fluctuations during the exposure time. The increase in the amplitude of Alfv\'en waves cannot, alone, explain the observed features. A double-Gaussian fit of the line profiles shows that, both for dimmings and active region loops, one component is nearly at rest while the second component presents a larger Doppler shift than that derived from a single-Gaussian fit.Comment: 16 pages, 11 figures - Accepted for publication in Ap

    Photometry of VS0329+1250: A New, Short-Period SU Ursae Majoris Star

    Full text link
    Time-resolved CCD photometry is presented of the recently-discovered (V~15 at maximum light) eruptive variable star in Taurus, which we dub VS0329+1250. A total of ~20 hr of data obtained over six nights reveals superhumps in the light curves, confirming the star as a member of the SU UMa class of dwarf novae. The superhumps recur with a mean period of 0.053394(7) days (76.89 min), which represents the shortest superhump period known in a classical SU UMa star. A quadratic fit to the timings of superhump maxima reveals that the superhump period was increasing at a rate given by dP/dt ~ (2.1 +/- 0.8) x 10^{-5} over the course of our observations. An empirical relation between orbital period and the absolute visual magnitude of dwarf novae at maximum light, suggests that VS0329+1250 lies at a distance of ~1.2 +/- 0.2 kpc.Comment: V2 - The paper has been modified to incorporate the referee's comments, and has now been accepted for publication in the PASP. The most significant change is that we are now able to confirm that the superhump period was increasing during the course of our observation

    Doping-driven Mott transition in La_{1-x}Sr_xTiO_3 via simultaneous electron and hole doping of t2g subbands

    Get PDF
    The insulator to metal transition in LaTiO_3 induced by La substitution via Sr is studied within multi-band exact diagonalization dynamical mean field theory at finite temperatures. It is shown that weak hole doping triggers a large interorbital charge transfer, with simultaneous electron and hole doping of t2g subbands. The transition is first-order and exhibits phase separation between insulator and metal. In the metallic phase, subband compressibilities become very large and have opposite signs. Electron doping gives rise to an interorbital charge flow in the same direction as hole doping. These results can be understood in terms of a strong orbital depolarization.Comment: 4 pages, 5 figure

    Photometric Studies of a WZ Sge-Type Dwarf Nova Candidate, ASAS160048-4846.2

    Full text link
    We report on our time-resolved CCD photometry during the 2005 June superoutburst of a WZ Sge-type dwarf nova candidate, ASAS 160048-4846.2. The ordinary superhumps underwent a complex evolution during the superoutburst. The superhump amplitude experienced a regrowth, and had two peaks. The superhump period decreased when the superhump amplitude reached to the first maximum, successively gradually increased until the second maximum of the amplitude, and finally decreased again. Investigating other SU UMa-type dwarf novae which show an increase of the superhump period, we found the same trend of the superhump evolution in superoutbursts of them. We speculate that the superhump regrowth in the amplitude has a close relation to the increase of the superhump period, and all of SU UMa-type dwarf novae with a superhump regrowth follow the same evolution of the ordinary superhumps as that of ASAS 160048-4846.2.Comment: 7 pages, 4 figure
    • …
    corecore