2,053 research outputs found
Transition from Band insulator to Bose-Einstein Condensate superfluid and Mott State of Cold Fermi Gases with Multiband Effects in Optical Lattices
We study two models realized by two-component Fermi gases loaded in optical
lattices. We clarify that multi-band effects inevitably caused by the optical
lattices generate a rich structure, when the systems crossover from the region
of weakly bound molecular bosons to the region of strongly bound atomic bosons.
Here the crossover can be controlled by attractive fermion interaction. One of
the present models is a case with attractive fermion interaction, where an
insulator-superfluid transition takes place. The transition is characterized as
the transition between a band insulator and a Bose-Einstein condensate (BEC)
superfluid state. Differing from the conventional BCS superfluid transition,
this transition shows unconventional properties. In contrast to the one
particle excitation gap scaled by the superfluid order parameter in the
conventional BCS transition, because of the multi-band effects, a large gap of
one-particle density of states is retained all through the transition although
the superfluid order grows continuously from zero. A reentrant transition with
lowering temperature is another unconventionality. The other model is the case
with coexisting attractive and repulsive interactions. Within a mean field
treatment, we find a new insulating state, an orbital ordered insulator. This
insulator is one candidate for the Mott insulator of molecular bosons and is
the first example that the orbital internal degrees of freedom of molecular
bosons appears explicitly. Besides the emergence of a new phase, a coexisting
phase also appears where superfluidity and an orbital order coexist just by
doping holes or particles. The insulating and superfluid particles show
differentiation in momentum space as in the high-Tc cuprate superconductors.Comment: 13 pages, 10 figure
Superconductivity Driven by the Interband Coulomb Interaction and Implications for the Superconducting Mechanism of MgB2
Superconducting mechanism mediated by interband exchange Coulomb repulsion is
examined in an extended two-band Hubbard models with a wide band crossing the
Fermi level and coexisting with a narrower band located at moderately lower
energy. We apply newly developed path-integral renormalization group method to
reliably calculate pairing correlations. The correlation shows marked
enhancement at moderate amplitudes of the exchange Coulomb repulsion taken
smaller than the on-site repulsion for the narrower band. The pairing symmetry
is s-wave while it has unconventional phases with the opposite sign between the
order parameters on the two bands, in agreement with the mean-field prediction.
Since the band structure of recently discovered superconductor MgB shares
basic similarities with our model, we propose that the present results provide
a relevant clue for the understanding of the superconducting mechanism in
MgB as well as in this class of multi-band materials with good metallic
conduction in the normal state.Comment: 4pages, 2figure
Fate of Quasiparticle at Mott Transition and Interplay with Lifshitz Transition Studied by Correlator Projection Method
Filling-control metal-insulator transition on the two-dimensional Hubbard
model is investigated by using the correlator projection method, which takes
into account momentum dependence of the free energy beyond the dynamical
mean-field theory. The phase diagram of metals and Mott insulators is analyzed.
Lifshitz transitions occur simultaneously with metal-insulator transitions at
large Coulomb repulsion. On the other hand, they are separated each other for
lower Coulomb repulsion, where the phase sandwiched by the Lifshitz and
metal-insulator transitions appears to show violation of the Luttinger sum
rule. Through the metal-insulator transition, quasiparticles retain nonzero
renormalization factor and finite quasi-particle weight in the both sides of
the transition. This supports that the metal-insulator transition is caused not
by the vanishing renormalization factor but by the relative shift of the Fermi
level into the Mott gap away from the quasiparticle band, in sharp contrast
with the original dynamical mean-field theory. Charge compressibility diverges
at the critical end point of the first-order Lifshitz transition at finite
temperatures. The origin of the divergence is ascribed to singular momentum
dependence of the quasiparticle dispersion.Comment: 24 pages including 10 figure
Superconductivity from Flat Dispersion Designed in Doped Mott Insulators
Routes to enhance superconducting instability are explored for doped Mott
insulators. With the help of insights for criticalities of metal-insulator
transitions, geometrical design of lattice structure is proposed to control the
instability. A guideline is to explicitly make flat band dispersions near the
Fermi level without suppressing two-particle channels. In a one-dimensional
model, numerical studies show that our prescription with finite-ranged hoppings
realizes large enhancement of spin-gap and pairing dominant regions. We also
propose several multi-band systems, where the pairing is driven by intersite
Coulomb repulsion.Comment: 4 pages, to be published in Phys. Rev. Let
On the nature of spectral line broadening in solar coronal dimmings
We analyze the profiles of iron emission lines observed in solar coronal
dimmings associated with coronal mass ejections, using the EUV Imaging
Spectrometer on board Hinode. We quantify line profile distortions with
empirical coefficients (asymmetry and peakedness) that compare the fitted
Gaussian to the data. We find that the apparent line broadenings reported in
previous studies are likely to be caused by inhomogeneities of flow velocities
along the line of sight, or at scales smaller than the resolution scale, or by
velocity fluctuations during the exposure time. The increase in the amplitude
of Alfv\'en waves cannot, alone, explain the observed features. A
double-Gaussian fit of the line profiles shows that, both for dimmings and
active region loops, one component is nearly at rest while the second component
presents a larger Doppler shift than that derived from a single-Gaussian fit.Comment: 16 pages, 11 figures - Accepted for publication in Ap
Photometry of VS0329+1250: A New, Short-Period SU Ursae Majoris Star
Time-resolved CCD photometry is presented of the recently-discovered (V~15 at
maximum light) eruptive variable star in Taurus, which we dub VS0329+1250. A
total of ~20 hr of data obtained over six nights reveals superhumps in the
light curves, confirming the star as a member of the SU UMa class of dwarf
novae. The superhumps recur with a mean period of 0.053394(7) days (76.89 min),
which represents the shortest superhump period known in a classical SU UMa
star. A quadratic fit to the timings of superhump maxima reveals that the
superhump period was increasing at a rate given by dP/dt ~ (2.1 +/- 0.8) x
10^{-5} over the course of our observations. An empirical relation between
orbital period and the absolute visual magnitude of dwarf novae at maximum
light, suggests that VS0329+1250 lies at a distance of ~1.2 +/- 0.2 kpc.Comment: V2 - The paper has been modified to incorporate the referee's
comments, and has now been accepted for publication in the PASP. The most
significant change is that we are now able to confirm that the superhump
period was increasing during the course of our observation
Doping-driven Mott transition in La_{1-x}Sr_xTiO_3 via simultaneous electron and hole doping of t2g subbands
The insulator to metal transition in LaTiO_3 induced by La substitution via
Sr is studied within multi-band exact diagonalization dynamical mean field
theory at finite temperatures. It is shown that weak hole doping triggers a
large interorbital charge transfer, with simultaneous electron and hole doping
of t2g subbands. The transition is first-order and exhibits phase separation
between insulator and metal. In the metallic phase, subband compressibilities
become very large and have opposite signs. Electron doping gives rise to an
interorbital charge flow in the same direction as hole doping. These results
can be understood in terms of a strong orbital depolarization.Comment: 4 pages, 5 figure
Photometric Studies of a WZ Sge-Type Dwarf Nova Candidate, ASAS160048-4846.2
We report on our time-resolved CCD photometry during the 2005 June
superoutburst of a WZ Sge-type dwarf nova candidate, ASAS 160048-4846.2. The
ordinary superhumps underwent a complex evolution during the superoutburst. The
superhump amplitude experienced a regrowth, and had two peaks. The superhump
period decreased when the superhump amplitude reached to the first maximum,
successively gradually increased until the second maximum of the amplitude, and
finally decreased again. Investigating other SU UMa-type dwarf novae which show
an increase of the superhump period, we found the same trend of the superhump
evolution in superoutbursts of them. We speculate that the superhump regrowth
in the amplitude has a close relation to the increase of the superhump period,
and all of SU UMa-type dwarf novae with a superhump regrowth follow the same
evolution of the ordinary superhumps as that of ASAS 160048-4846.2.Comment: 7 pages, 4 figure
- …