26,940 research outputs found

    Massive Lyman Break Galaxies at z~3 in the Spitzer Extragalactic First Look Survey

    Get PDF
    We investigate the properties of 1088 Lyman Break Galaxies (LBGs) at z~3 selected from a ~2.63deg2subregionoftheFirstLookSurveyfieldusingthegroundbasedmulticolordataandtheSpitzerSpaceTelescopemidinfrareddataat38and24um.Withthewideareaandthebroadwavelengthcoverage,wesamplealargenumberofrareubanddropoutswhicharemassive(M>1011Msun),allowingustoperformastatisticalanalysisofthesesubsetsofLBGsthathavenotbeenstudiedindetail.Opticallybright(R(AB)<24.5mag)LBGsdetectedinmidinfrared(S3.6um>6uJy)resideatthemostmassiveanddustyendoftheLBGpopulation,withrelativelyhighandtight deg2 sub-region of the First Look Survey field using the ground-based multi-color data and the Spitzer Space Telescope mid-infrared data at 3--8 and 24 um. With the wide area and the broad wavelength coverage, we sample a large number of ``rare'' u-band dropouts which are massive (M* > 10^11 Msun), allowing us to perform a statistical analysis of these subsets of LBGs that have not been studied in detail. Optically bright (R(AB) < 24.5 mag) LBGs detected in mid-infrared (S_{3.6um} > 6 uJy) reside at the most massive and dusty end of the LBG population, with relatively high and tight M/L$ in rest-frame near-infrared. Most infrared-luminous LBGs (S_{24um} > 100 uJy) are dusty star-forming galaxies with star formation rates of 100--1000 Msun/yr, total infrared luminosity of > 10^12 Lsun. By constructing the UV luminosity function of massive LBGs, we estimate that the lower limit for the star formation rate density from LBGs more massive than 10^11 Msun at z~3 is > 3.3 x 10^-3 Msun/yr/Mpc^3, showing for the first time that the UV-bright population of massive galaxies alone contributes significantly to the global star formation rate density at z~3. When combined with the star formation rate densities at z < 2, our result reveals a steady increase in the contribution of massive galaxies to the global star formation from z=0 to z=3, providing strong support to the downsizing of galaxy formation.Comment: 15 pages, 13 figures. Accepted for publication in Ap

    Simulation of aromatic SOA formation using the lumping model integrated with explicit gas-phase kinetic mechanisms and aerosol-phase reactions

    Get PDF
    The Unified Partitioning-Aerosol phase Reaction (UNIPAR) model has been developed to predict the secondary organic aerosol (SOA) formation through multiphase reactions. The model was evaluated with aromatic SOA data produced from the photooxidation of toluene and 1,3,5-trimethylbenzene (135-TMB) under various concentrations of NO<sub>x</sub> and SO<sub>2</sub> using an outdoor reactor (University of Florida Atmospheric PHotochemical Outdoor Reactor (UF-APHOR) chamber). When inorganic species (sulfate, ammonium and water) are present in aerosol, the prediction of both toluene SOA and 135-TMB SOA, in which the oxygen-to-carbon (O : C) ratio is lower than 0.62, are approached under the assumption of a complete organic/electrolyte-phase separation below a certain relative humidity. An explicit gas-kinetic model was employed to express gas-phase oxidation of aromatic hydrocarbons. Gas-phase products are grouped based on their volatility (6 levels) and reactivity (5 levels) and exploited to construct the stoichiometric coefficient (&alpha;<sub>i,j</sub>) matrix, the set of parameters used to describe the concentrations of organic compounds in multiphase. Weighting of the &alpha;<sub>i,j</sub> matrix as a function of NO<sub>x</sub> improved the evaluation of NO<sub>x</sub> effects on aromatic SOA. The total amount of organic matter (OM<sub>T</sub>) is predicted by two modules in the UNIPAR model: OM<sub>P</sub> by a partitioning process and OM<sub>AR</sub> by aerosol-phase reactions. The OM<sub>AR</sub> module predicts multiphase reactions of organic compounds, such as oligomerization, acid-catalyzed reactions, and organosulfate (OS) formation. The model reasonably simulates SOA formation under various aerosol acidities, NO<sub>x</sub> concentrations, humidities and temperatures. Furthermore, the OS fractions in the SOA predicted by the model were in good agreement with the experimentally measured OS fractions

    A Probe of New Physics in Top Quark Pair Production at ee+e^-e^+ Colliders

    Full text link
    We describe how to probe new physics through examination of the form factors describing the Ztt couplings via the scattering process e^-e^+->t+tbar. We focus on experimental methods on how the top quark momentum can be determined and show how this can be applied to select polarized samples of ttˉt\bar{t} pairs through the angular correlations in the final state leptons. We also study the dependence on the energy and luminosity of an \ee\ collider to probe a CP violating asymmetry at the 10210^{-2} level.}Comment: 24 pages in TeXsis (figures available upon request) (revised July 1993

    Towards the Amplituhedron Volume

    Get PDF
    21 pages; v2: version published in JHEPIt has been recently conjectured that scattering amplitudes in planar N=4 super Yang-Mills are given by the volume of the (dual) amplituhedron. In this paper we show some interesting connections between the tree-level amplituhedron and a special class of differential equations. In particular we demonstrate how the amplituhedron volume for NMHV amplitudes is determined by these differential equations. The new formulation allows for a straightforward geometric description, without any reference to triangulations. Finally we discuss possible implications for volumes related to generic N^kMHV amplitudes.Peer reviewe

    Growth factor restriction impedes progression of wound healing following cataract surgery: identification of VEGF as a putative therapeutic target

    Get PDF
    Secondary visual loss occurs in millions of patients due to a wound-healing response, known as posterior capsule opacification (PCO), following cataract surgery. An intraocular lens (IOL) is implanted into residual lens tissue, known as the capsular bag, following cataract removal. Standard IOLs allow the anterior and posterior capsules to become physically connected. This places pressure on the IOL and improves contact with the underlying posterior capsule. New open bag IOL designs separate the anterior capsule and posterior capsules and further reduce PCO incidence. It is hypothesised that this results from reduced cytokine availability due to greater irrigation of the bag. We therefore explored the role of growth factor restriction on PCO using human lens cell and tissue culture models. We demonstrate that cytokine dilution, by increasing medium volume, significantly reduced cell coverage in both closed and open capsular bag models. This coincided with reduced cell density and myofibroblast formation. A screen of 27 cytokines identified nine candidates whose expression profile correlated with growth. In particular, VEGF was found to regulate cell survival, growth and myofibroblast formation. VEGF provides a therapeutic target to further manage PCO development and will yield best results when used in conjunction with open bag IOL designs

    Chitosan nanocomposites based on distinct inorganic fillers for biomedical applications

    Get PDF
    AbstractChitosan (CHI), a biocompatible and biodegradable polysaccharide with the ability to provide a non-protein matrix for tissue growth, is considered to be an ideal material in the biomedical field. However, the lack of good mechanical properties limits its applications. In order to overcome this drawback, CHI has been combined with different polymers and fillers, leading to a variety of chitosan-based nanocomposites. The extensive research on CHI nanocomposites as well as their main biomedical applications are reviewed in this paper. An overview of the different fillers and assembly techniques available to produce CHI nanocomposites is presented. Finally, the properties of such nanocomposites are discussed with particular focus on bone regeneration, drug delivery, wound healing and biosensing applications

    Investigating the trade-off between the effectiveness and efficiency of process modeling

    Get PDF
    Despite recent efforts to improve the quality of process models, we still observe a significant dissimilarity in quality between models. This paper focuses on the syntactic condition of process models, and how it is achieved. To this end, a dataset of 121 modeling sessions was investigated. By going through each of these sessions step by step, a separate ‘revision’ phase was identified for 81 of them. Next, by cutting the modeling process off at the start of the revision phase, a partial process model was exported for these modeling sessions. Finally, each partial model was compared with its corresponding final model, in terms of time, effort, and the number of syntactic errors made or solved, in search for a possible trade-off between the effectiveness and efficiency of process modeling. Based on the findings, we give a provisional explanation for the difference in syntactic quality of process models
    corecore