56 research outputs found

    In Vitro Modeling of the Interaction between Human Epithelial Cells and Lymphocytes upon Influenza Infection

    Get PDF
    Influenza viruses are a continuous threat to humans because of their ability to cross species barriers and adapt to new hosts. Data from murine studies, along with limited human data, suggest that CD8(+) cytotoxic T lymphocytes (CTL) that recognize conserved epitopes of structural influenza proteins are the main mediators of influenza virus clearance. Additionally, the fact that many CTLs recognize epitopes shared between different influenza strains offers the potential for broad cross-strain immunity. However, the mechanisms of cellular immunity against influenza viruses are poorly defined in humans, where the CTL response has been hard to measure and interpret. We developed a novel CTL assay that utilizes fully differentiated nasal human epithelial cells taken from volunteers as permissive targets for autologous peripheral blood-derived influenza virus-specific cytotoxic T lymphocytes. This in vitro system of human lymphocyte-epithelial cell co-cultures can be considered as the closest approximation to events in vivo and can be employed for studying the interactions between the pathogen and human host. Modeling of the natural interaction process between the primary cell type that supports the productive replication of influenza and immune cells may allow us to put in perspective CTLs as a correlate of immunity to influenza in humans

    Comparative Study of Influenza Virus Replication in MDCK Cells and in Primary Cells Derived from Adenoids and Airway Epithelium

    Get PDF
    Although clinical trials with human subjects are essential for determination of safety, infectivity, and immunogenicity, it is de- sirable to know in advance the infectiousness of potential candidate live attenuated influenza vaccine strains for human use. We compared the replication kinetics of wild-type and live attenuated influenza viruses, including H1N1, H3N2, H9N2, and B strains, in Madin-Darby canine kidney (MDCK) cells, primary epithelial cells derived from human adenoids, and human bron- chial epithelium (NHBE cells). Our data showed that despite the fact that all tissue culture models lack a functional adaptive im- mune system, differentiated cultures of human epithelium exhibited the greatest restriction for all H1N1, H3N2, and B vaccine viruses studied among three cell types tested and the best correlation with their levels of attenuation seen in clinical trials with humans. In contrast, the data obtained with MDCK cells were the least predictive of restricted viral replication of live attenuated vaccine viruses in humans. We were able to detect a statistically significant difference between the replication abilities of the U.S. (A/Ann Arbor/6/60) and Russian (A/Leningrad/134/17/57) cold-adapted vaccine donor strains in NHBE cultures. Since live at- tenuated pandemic influenza vaccines may potentially express a hemagglutinin and neuraminidase from a non-human influenza virus, we assessed which of the three cell cultures could be used to optimally evaluate the infectivity and cellular tropism of vi- ruses derived from different hosts. Among the three cell types tested, NHBE cultures most adequately reflected the infectivity and cellular tropism of influenza virus strains with different receptor specificities. NHBE cultures could be considered for use as a screening step for evaluating the restricted replication of influenza vaccine candidates

    B Cell Response and Hemagglutinin Stalk-Reactive Antibody Production in Different Age Cohorts following 2009 H1N1 Influenza Virus Vaccination

    Get PDF
    The 2009 pandemic H1N1 (pH1N1) influenza virus carried a swine-origin hemagglutinin (HA) that was closely related to the HAs of pre-1947 H1N1 viruses but highly divergent from the HAs of recently circulating H1N1 strains. Consequently, prior ex- posure to pH1N1-like viruses was mostly limited to individuals over the age of about 60 years. We related age and associated dif- ferences in immune history to the B cell response to an inactivated monovalent pH1N1 vaccine given intramuscularly to subjects in three age cohorts: 18 to 32 years, 60 to 69 years, and \u3e70 years. The day 0 pH1N1-specific hemagglutination inhibition (HAI) and microneutralization (MN) titers were generally higher in the older cohorts, consistent with greater prevaccination exposure to pH1N1-like viruses. Most subjects in each cohort responded well to vaccination, with early formation of circulating virus- specific antibody (Ab)-secreting cells and \u3e4-fold increases in HAI and MN titers. However, the response was strongest in the 18- to 32-year cohort. Circulating levels of HA stalk-reactive Abs were increased after vaccination, especially in the 18- to 32-year cohort, raising the possibility of elevated levels of cross-reactive neutralizing Abs. In the young cohort, an increase in MN activ- ity against the seasonal influenza virus A/Brisbane/59/07 after vaccination was generally associated with an increase in the anti- Brisbane/59/07 HAI titer, suggesting an effect mediated primarily by HA head-reactive rather than stalk-reactive Abs. Our find- ings support recent proposals that immunization with a relatively novel HA favors the induction of Abs against conserved epitopes. They also emphasize the need to clarify how the level of circulating stalk-reactive Abs relates to resistance to influenza

    Effect of Neuraminidase Inhibitor–Resistant Mutations on Pathogenicity of Clade 2.2 A/Turkey/15/06 (H5N1) Influenza Virus in Ferrets

    Get PDF
    The acquisition of neuraminidase (NA) inhibitor resistance by H5N1 influenza viruses has serious clinical implications, as this class of drugs can be an essential component of pandemic control measures. The continuous evolution of the highly pathogenic H5N1 influenza viruses results in the emergence of natural NA gene variations whose impact on viral fitness and NA inhibitor susceptibility are poorly defined. We generated seven genetically stable recombinant clade 2.2 A/Turkey/15/06-like (H5N1) influenza viruses carrying NA mutations located either in the framework residues (E119A, H274Y, N294S) or in close proximity to the NA enzyme active site (V116A, I117V, K150N, Y252H). NA enzyme inhibition assays showed that NA mutations at positions 116, 117, 274, and 294 reduced susceptibility to oseltamivir carboxylate (IC50s increased 5- to 940-fold). Importantly, the E119A NA mutation (previously reported to confer resistance in the N2 NA subtype) was stable in the clade 2.2 H5N1 virus background and induced cross-resistance to oseltamivir carboxylate and zanamivir. We demonstrated that Y252H NA mutation contributed for decreased susceptibility of clade 2.2 H5N1 viruses to oseltamivir carboxylate as compared to clade 1 viruses. The enzyme kinetic parameters (Vmax, Km and Ki) of the avian-like N1 NA glycoproteins were highly consistent with their IC50 values. None of the recombinant H5N1 viruses had attenuated virulence in ferrets inoculated with 106 EID50 dose. Most infected ferrets showed mild clinical disease signs that differed in duration. However, H5N1 viruses carrying the E119A or the N294S NA mutation were lethal to 1 of 3 inoculated animals and were associated with significantly higher virus titers (P<0.01) and inflammation in the lungs compared to the wild-type virus. Our results suggest that highly pathogenic H5N1 variants carrying mutations within the NA active site that decrease susceptibility to NA inhibitors may possess increased virulence in mammalian hosts compared to drug-sensitive viruses. There is a need for novel anti-influenza drugs that target different virus/host factors and can limit the emergence of resistance

    Extensive Mammalian Ancestry of Pandemic (H1N1) 2009 Virus

    Get PDF
    We demonstrate that the novel pandemic influenza (H1N1) viruses have human virus–like receptor specificity and can no longer replicate in aquatic waterfowl, their historic natural reservoir. The biological properties of these viruses are consistent with those of their phylogenetic progenitors, indicating longstanding adaptation to mammals

    Human-Like Receptor Specificity Does Not Affect the Neuraminidase-Inhibitor Susceptibility of H5N1 Influenza Viruses

    Get PDF
    If highly pathogenic H5N1 influenza viruses acquire affinity for human rather than avian respiratory epithelium, will their susceptibility to neuraminidase (NA) inhibitors (the likely first line of defense against an influenza pandemic) change as well? Adequate pandemic preparedness requires that this question be answered. We generated and tested 31 recombinants of A/Vietnam/1203/04 (H5N1) influenza virus carrying single, double, or triple mutations located within or near the receptor binding site in the hemagglutinin (HA) glycoprotein that alter H5 HA binding affinity or specificity. To gain insight into how combinations of HA and NA mutations can affect the sensitivity of H5N1 virus to NA inhibitors, we also rescued viruses carrying the HA changes together with the H274Y NA substitution, which was reported to confer resistance to the NA inhibitor oseltamivir. Twenty viruses were genetically stable. The triple N158S/Q226L/N248D HA mutation (which eliminates a glycosylation site at position 158) caused a switch from avian to human receptor specificity. In cultures of differentiated human airway epithelial (NHBE) cells, which provide an ex vivo model that recapitulates the receptors in the human respiratory tract, none of the HA-mutant recombinants showed reduced susceptibility to antiviral drugs (oseltamivir or zanamivir). This finding was consistent with the results of NA enzyme inhibition assay, which appears to predict influenza virus susceptibility in vivo. Therefore, acquisition of human-like receptor specificity does not affect susceptibility to NA inhibitors. Sequence analysis of the NA gene alone, rather than analysis of both the NA and HA genes, and phenotypic assays in NHBE cells are likely to adequately identify drug-resistant H5N1 variants isolated from humans during an outbreak

    Protection from the 2009 H1N1 Pandemic Influenza by an Antibody from Combinatorial Survivor-Based Libraries

    Get PDF
    Influenza viruses elude immune responses and antiviral chemotherapeutics through genetic drift and reassortment. As a result, the development of new strategies that attack a highly conserved viral function to prevent and/or treat influenza infection is being pursued. Such novel broadly acting antiviral therapies would be less susceptible to virus escape and provide a long lasting solution to the evolving virus challenge. Here we report the in vitro and in vivo activity of a human monoclonal antibody (A06) against two isolates of the 2009 H1N1 pandemic influenza virus. This antibody, which was obtained from a combinatorial library derived from a survivor of highly pathogenic H5N1 infection, neutralizes H5N1, seasonal H1N1 and 2009 “Swine” H1N1 pandemic influenza in vitro with similar potency and is capable of preventing and treating 2009 H1N1 influenza infection in murine models of disease. These results demonstrate broad activity of the A06 antibody and its utility as an anti-influenza treatment option, even against newly evolved influenza strains to which there is limited immunity in the general population

    Influenza H1 Mosaic Hemagglutinin Vaccine Induces Broad Immunity and Protection in Mice

    Get PDF
    Annually, influenza A virus (IAV) infects ~5–10% of adults and 20–30% of children worldwide. The primary resource to protect against infection is by vaccination. However, vaccination only induces strain-specific and transient immunity. Vaccine strategies that induce cross-protective immunity against the broad diversity of IAV are needed. Here we developed and tested a novel mosaic H1 HA immunogen. The mosaic immunogen was optimized in silico to include the most potential B and T cell epitopes (PBTE) across a diverse population of human H1 IAV. Phylogenetic analysis showed that the mosaic HA localizes towards the non-pandemic 2009 strains which encompasses the broadest diversity in the H1 IAV population. We compared the mosaic H1 immunogen to wild-type HA immunogens and the commercial inactivated influenza vaccine, Fluzone. When analyzed by ELISA, the mosaic immunogen induced stronger antibody responses against all four diverse H1 HA proteins. When analyzing T cell responses, again the mosaic immunogen induced stronger cellular immunity against all 4 diverse HA strains. Not only was the magnitude of T cell responses strongest in mosaic immunized mice, the number of epitopes recognized was also greater. The mosaic vaccinated mice showed strong cross-protection against challenges with three divergent IAV strains. These data show that the mosaic immunogen induces strong cross-protective immunity and should be investigated further as a universal influenza vaccine
    corecore