3 research outputs found

    Pantropical variability in tree crown allometry

    Get PDF
    Aim: Tree crowns determine light interception, carbon and water exchange. Thus, understanding the factors causing tree crown allometry to vary at the tree and stand level matters greatly for the development of future vegetation modelling and for the calibration of remote sensing products. Nevertheless, we know little about large‐scale variation and determinants in tropical tree crown allometry. In this study, we explored the continental variation in scaling exponents of site‐specific crown allometry and assessed their relationships with environmental and stand‐level variables in the tropics. / Location: Global tropics. / Time period: Early 21st century. / Major taxa studied: Woody plants. / Methods: Using a dataset of 87,737 trees distributed among 245 forest and savanna sites across the tropics, we fitted site‐specific allometric relationships between crown dimensions (crown depth, diameter and volume) and stem diameter using power‐law models. Stand‐level and environmental drivers of crown allometric relationships were assessed at pantropical and continental scales. / Results: The scaling exponents of allometric relationships between stem diameter and crown dimensions were higher in savannas than in forests. We identified that continental crown models were better than pantropical crown models and that continental differences in crown allometric relationships were driven by both stand‐level (wood density) and environmental (precipitation, cation exchange capacity and soil texture) variables for both tropical biomes. For a given diameter, forest trees from Asia and savanna trees from Australia had smaller crown dimensions than trees in Africa and America, with crown volumes for some Asian forest trees being smaller than those of trees in African forests. / Main conclusions: Our results provide new insight into geographical variability, with large continental differences in tropical tree crown allometry that were driven by stand‐level and environmental variables. They have implications for the assessment of ecosystem function and for the monitoring of woody biomass by remote sensing techniques in the global tropics

    Rate of forest recovery after fire exclusion on anthropogenic savannas in the Democratic Republic of Congo

    No full text
    Deforestation in the tropics is often followed by the creation of anthropogenic savannas used for animal husbandry. By discontinuing burning regimes, forests may recolonize the savanna and carbon stocks may recover. However, little is known about the success and speed of tropical forest recovery, while such information is vital for a better quantification of efforts to reduce emissions from deforestation and forest degradation (REDD +) as well as supporting Forest Landscape Restoration (FLR) practices. Therefore, we designed a forest regeneration experiment within a savanna patch in the Mayombe hills (Democratic Republic of Congo), by discontinuing the annual burning regime in an 88 ha exclosure since 2005. 101 permanent inventory plots (40.4 ha) were installed in 2010 and remeasured in 2014. Tree species were classified as savanna or forest specialists. We estimate a forest specialist encroachment rate of 9 stems ha(-1) yr(-1) and a savanna specialist disappearance rate of 16 stems ha(-1) yr(-1). Average diameter of forest specialists did not change due to an increasing influx of recruits, while average diameter of savanna trees increased due to decreasing recruitment. Carbon stored by forest specialists increased from 3.12 to 5.60 Mg C ha(-1), suggesting a forest carbon recovery rate of 0.62 Mg C ha(-1) yr(-1). Using the average carbon stock of 19 nearby mature rainforest plots as a reference, we estimate a total forest carbon recovery time of at least 150 years. The Manzonzi exclosure may potentially become an important reference experiment to quantify REDD + schemes in Central Africa. Furthermore, this natural regeneration experiment demonstrates how carbon sequestration and biodiversity conservation can go hand-in-hand. However, more censuses are needed to better quantify the long-term carbon recovery trajectory within the protected area

    Co-limitation towards lower latitudes shapes global forest diversity gradients

    Get PDF
    The latitudinal diversity gradient (LDG) is one of the most recognized global patterns of species richness exhibited across a wide range of taxa. Numerous hypotheses have been proposed in the past two centuries to explain LDG, but rigorous tests of the drivers of LDGs have been limited by a lack of high-quality global species richness data. Here we produce a high-resolution (0.025° × 0.025°) map of local tree species richness using a global forest inventory database with individual tree information and local biophysical characteristics from ~1.3 million sample plots. We then quantify drivers of local tree species richness patterns across latitudes. Generally, annual mean temperature was a dominant predictor of tree species richness, which is most consistent with the metabolic theory of biodiversity (MTB). However, MTB underestimated LDG in the tropics, where high species richness was also moderated by topographic, soil and anthropogenic factors operating at local scales. Given that local landscape variables operate synergistically with bioclimatic factors in shaping the global LDG pattern, we suggest that MTB be extended to account for co-limitation by subordinate drivers
    corecore