5 research outputs found

    Evaluation of Hyperspectral Indices for Chlorophyll-a Concentration Estimation in Tangxun Lake (Wuhan, China)

    Get PDF
    Chlorophyll-a (Chl-a) concentration is a major indicator of water quality which is harmful to human health. A growing number of studies have focused on the derivation of Chl-a concentration information from hyperspectral sensor data and the identification of best indices for Chl-a monitoring. The objective of this study is to assess the potential of hyperspectral indices to detect Chl-a concentrations in Tangxun Lake, which is the second largest lake in Wuhan, Central China. Hyperspectral reflectance and Chl-a concentration were measured at ten sample sites in Tangxun Lake. Three types of hyperspectral methods, including single-band reflectance, first derivative of reflectance, and reflectance ratio, were extracted from the spectral profiles of all bands of the hyperspectral sensor. The most appropriate bands for algorithms mentioned above were selected based on the correlation analysis. Evaluation results indicated that two methods, the first derivative of reflectance and reflectance ratio, were highly correlated (R2 > 0.8) with the measured Chl-a concentrations. Thus, the spatial and temporal variations of Chl-a concentration could be conveniently monitored with these hyperspectral methods

    Using discretization for extending the set of predictive features

    No full text
    Abstract To date, attribute discretization is typically performed by replacing the original set of continuous features with a transposed set of discrete ones. This paper provides support for a new idea that discretized features should often be used in addition to existing features and as such, datasets should be extended, and not replaced, by discretization. We also claim that discretization algorithms should be developed with the explicit purpose of enriching a non-discretized dataset with discretized values. We present such an algorithm, D-MIAT, a supervised algorithm that discretizes data based on minority interesting attribute thresholds. D-MIAT only generates new features when strong indications exist for one of the target values needing to be learned and thus is intended to be used in addition to the original data. We present extensive empirical results demonstrating the success of using D-MIAT on 28 benchmark datasets. We also demonstrate that 10 other discretization algorithms can also be used to generate features that yield improved performance when used in combination with the original non-discretized data. Our results show that the best predictive performance is attained using a combination of the original dataset with added features from a “standard” supervised discretization algorithm and D-MIAT
    corecore