585 research outputs found
The Relationship of Coronal Mass Ejections to Streamers
We have examined images from the Large Angle Spectroscopic Coronagraph
(LASCO) to study the relationship of Coronal Mass Ejections (CMEs) to coronal
streamers. We wish to test the suggestion (Low 1996) that CMEs arise from flux
ropes embedded in a streamer erupting, thus disrupting the streamer. The data
span a period of two years near sunspot minimum through a period of increased
activity as sunspot numbers increased. We have used LASCO data from the C2
coronagraph which records Thomson scattered white light from coronal electrons
at heights between 1.5 and 6R_sun. Maps of the coronal streamers have been
constructed from LASCO C2 observations at a height of 2.5R_sun at the east and
west limbs. We have superposed the corresponding positions of CMEs observed
with the C2 coronagraph onto the synoptic maps. We identified the different
kinds of signatures CMEs leave on the streamer structure at this height
(2.5R_sun). We find four types of CMEs with respect to their effect on
streamers:
1. CMEs that disrupt the streamer 2. CMEs that have no effect on the
streamer, even though they are related to it. 3. CMEs that create streamer-like
structures 4. CMEs that are latitudinally displaced from the streamer.
This is the most extensive observational study of the relation between CMEs
and streamers to date. Previous studies using SMM data have made the general
statement that CMEs are mostly associated with streamers, and that they
frequently disrupt it. However, we find that approximately 35% of the observed
CMEs bear no relation to the pre-existing streamer, while 46% have no effect on
the observed streamer, even though they appear to be related to it. Our
conclusions thus differ considerably from those of previous studies.Comment: Accepted, Journal of Geophysical Research. 8 figs, better versions at
http://www.science.gmu.edu/~prasads/streamer.htm
Habitat complexity and predator odours impact on the stress response and antipredation behaviour in coral reef fish
Mass coral bleaching events coupled with local stressors have caused regional-scale loss of corals on reefs globally. Following the loss of corals, the structural complexity of these habitats is often reduced. By providing shelter, obscuring visual information, or physically impeding predators, habitat complexity can influence predation risk and the perception of risk by prey. Yet little is known on how habitat complexity and risk assessment interact to influence predator-prey interactions. To better understand how prey’s perception of threats may shift in degraded ecosystems, we reared juvenile Pomacentrus chrysurus in environments of various habitat complexity levels and then exposed them to olfactory risk odours before simulating a predator strike. We found that the fast-start escape responses were enhanced when forewarned with olfactory cues of a predator and in environments of increasing complexity. However, no interaction between complexity and olfactory cues was observed in escape responses. To ascertain if the mechanisms used to modify these escape responses were facilitated through hormonal pathways, we conducted whole-body cortisol analysis. Cortisol concentrations interacted with habitat complexity and risk odours, such that P. chrysurus exhibited elevated cortisol levels when forewarned with predator odours, but only when complexity levels were low. Our study suggests that as complexity is lost, prey may more appropriately assess predation risk, likely as a result of receiving additional visual information. Prey’s ability to modify their responses depending on the environmental context suggests that they may be able to partly alleviate the risk of increased predator-prey interactions as structural complexity is reduced
Photoluminescence and photoluminescence excitation studies of lateral size effects in Zn_{1-x}Mn_xSe/ZnSe quantum disc samples of different radii
Quantum disc structures (with diameters of 200 nm and 100 nm) were prepared
from a Zn_{0.72}Mn_{0.28}Se/ZnSe single quantum well structure by electron beam
lithography followed by an etching procedure which combined dry and wet etching
techniques. The quantum disc structures and the parent structure were studied
by photoluminescence and photoluminescence excitation spectroscopy. For the
light-hole excitons in the quantum well region, shifts of the energy positions
are observed following fabrication of the discs, confirming that strain
relaxation occurs in the pillars. The light-hole exciton lines also sharpen
following disc fabrication: this is due to an interplay between strain effects
(related to dislocations) and the lateral size of the discs. A further
consequence of the small lateral sizes of the discs is that the intensity of
the donor-bound exciton emission from the disc is found to decrease with the
disc radius. These size-related effects occur before the disc radius is reduced
to dimensions necessary for lateral quantum confinement to occur but will
remain important when the discs are made small enough to be considered as
quantum dots.Comment: LaTeX2e, 13 pages, 6 figures (epsfig
Self-Consistent MHD Modeling of a Coronal Mass Ejection, Coronal Dimming, and a Giant Cusp-Shaped Arcade Formation
We performed magnetohydrodynamic simulation of coronal mass ejections (CMEs)
and associated giant arcade formations, and the results suggested new
interpretations of observations of CMEs. We performed two cases of the
simulation: with and without heat conduction. Comparing between the results of
the two cases, we found that reconnection rate in the conductive case is a
little higher than that in the adiabatic case and the temperature of the loop
top is consistent with the theoretical value predicted by the Yokoyama-Shibata
scaling law. The dynamical properties such as velocity and magnetic fields are
similar in the two cases, whereas thermal properties such as temperature and
density are very different.In both cases, slow shocks associated with magnetic
reconnectionpropagate from the reconnection region along the magnetic field
lines around the flux rope, and the shock fronts form spiral patterns. Just
outside the slow shocks, the plasma density decreased a great deal. The soft
X-ray images synthesized from the numerical results are compared with the soft
X-ray images of a giant arcade observed with the Soft X-ray Telescope aboard
{\it Yohkoh}, it is confirmed that the effect of heat conduction is significant
for the detailed comparison between simulation and observation. The comparison
between synthesized and observed soft X-ray images provides new interpretations
of various features associated with CMEs and giant arcades.Comment: 39 pages, 18 figures. Accepted for publication in the Astrophysical
Journal. The PDF file with high resplution figures can be downloaded from
http://www.kwasan.kyoto-u.ac.jp/~shiota/study/ApJ62426.preprint.pdf
Chaotic Free-Space Laser Communication over Turbulent Channel
The dynamics of errors caused by atmospheric turbulence in a
self-synchronizing chaos based communication system that stably transmits
information over a 5 km free-space laser link is studied experimentally.
Binary information is transmitted using a chaotic sequence of short-term pulses
as carrier. The information signal slightly shifts the chaotic time position of
each pulse depending on the information bit. We report the results of an
experimental analysis of the atmospheric turbulence in the channel and the
impact of turbulence on the Bit-Error-Rate (BER) performance of this chaos
based communication system.Comment: 4 pages, 5 figure
Can Streamer Blobs prevent the Buildup of the Interplanetetary Magnetic Field?
Coronal Mass Ejections continuously drag closed magnetic field lines away
from the Sun, adding new flux to the interplanetary magnetic field (IMF). We
propose that the outward-moving blobs that have been observed in helmet
streamers are evidence of ongoing, small-scale reconnection in streamer current
sheets, which may play an important role in the prevention of an indefinite
buildup of the IMF. Reconnection between two open field lines from both sides
of a streamer current sheet creates a new closed field line, which becomes part
of the helmet, and a disconnected field line, which moves outward. The blobs
are formed by plasma from the streamer that is swept up in the trough of the
outward moving field line. We show that this mechanism is supported by
observations from SOHO/LASCO. Additionally, we propose a thorough statistical
study to quantify the contribution of blob formation to the reduction of the
IMF, and indicate how this mechanism may be verified by observations with
SOHO/UVCS and the proposed NASA STEREO and ESA Polar Orbiter missions.Comment: 7 pages, 2 figures; accepted by The Astrophysical Journal Letters;
uses AASTe
Endomicroscopic and transcriptomic analysis of impaired barrier function and malabsorption in environmental enteropathy
Introduction: Environmental enteropathy (EE) is associated with growth failure, micronutrient malabsorption and impaired responses to oral vaccines. We set out to define cellular mechanisms of impaired barrier function in EE and explore protective mechanisms. Methods: We studied 49 adults with environmental enteropathy in Lusaka, Zambia using confocal laser endomicroscopy (CLE); histology, immunohistochemistry and mRNA sequencing of small intestinal biopsies; and correlated these with plasma lipopolysaccharide (LPS) and a zinc uptake test. Results: CLE images (median 134 for each study) showed virtually ubiquitous small intestinal damage. Epithelial defects, imaged by histology and claudin 4 immunostaining, were predominantly seen at the tips of villi and corresponded with leakage imaged in vivo by CLE. In multivariate analysis, circulating log-transformed LPS was correlated with cell shedding events (β = 0.83; P = 0.035) and with serum glucagon-like peptide-2 (β = -0.13; P = 0.007). Zinc uptake from a test dose of 25mg was attenuated in 30/47 (64%) individuals and in multivariate analysis was reduced by HIV, but positively correlated with GLP-2 (β = 2.72; P = 0.03). There was a U-shaped relationship between circulating LPS and villus surface area. Transcriptomic analysis identified 23 differentially expressed genes in severe enteropathy, including protective peptides and proteins. Conclusions: Confocal endomicroscopy, claudin 4 immunostaining and histology identify epithelial defects which are probably sites of bacterial translocation, in the presence of which increased epithelial surface area increases the burden of translocation. GLP 2 and other protective peptides may play an important role in mucosal protection in EE
A subset of HLA-I peptides are not genomically templated: evidence for cis- and trans-spliced peptide ligands
The diversity of peptides displayed by class I human leukocyte antigen (HLA) plays an essential role in T cell immunity. The peptide repertoire is extended by various posttranslational modifications, including proteasomal splicing of peptide fragments from distinct regions of an antigen to form nongenomically templated cis-spliced sequences. Previously, it has been suggested that a fraction of the immunopeptidome constitutes such cis-spliced peptides; however, because of computational limitations, it has not been possible to assess whether trans-spliced peptides (i.e., the fusion of peptide segments from distinct antigens) are also bound and presented by HLA molecules, and if so, in what proportion. Here, we have developed and applied a bioinformatic workflow and demonstrated that trans-spliced peptides are presented by HLA-I, and their abundance challenges current models of proteasomal splicing that predict cis-splicing as the most probable outcome. These trans-spliced peptides display canonical HLA-binding sequence features and are as frequently identified as cis-spliced peptides found bound to a number of different HLA-A and HLA-B allotypes. Structural analysis reveals that the junction between spliced peptides is highly solvent exposed and likely to participate in T cell receptor interactions. These results highlight the unanticipated diversity of the immunopeptidome and have important implications for autoimmunity, vaccine design, and immunotherapy
Limiting motorboat noise on coral reefs boosts fish reproductive success
Anthropogenic noise impacts are pervasive across taxa, ecosystems and the world. Here, we experimentally test the hypothesis that protecting vulnerable habitats from noise pollution can improve animal reproductive success. Using a season-long field manipulation with an established model system on the Great Barrier Reef, we demonstrate that limiting motorboat activity on reefs leads to the survival of more fish offspring compared to reefs experiencing busy motorboat traffic. A complementary laboratory experiment isolated the importance of noise and, in combination with the field study, showed that the enhanced reproductive success on protected reefs is likely due to improvements in parental care and offspring length. Our results suggest noise mitigation could have benefits that carry through to the population-level by increasing adult reproductive output and offspring growth, thus helping to protect coral reefs from human impacts and presenting a valuable opportunity for enhancing ecosystem resilience
- …