49 research outputs found

    PPARγ controls CD1d expression by turning on retinoic acid synthesis in developing human dendritic cells

    Get PDF
    Dendritic cells (DCs) expressing CD1d, a molecule responsible for lipid antigen presentation, are capable of enhancing natural killer T (iNKT) cell proliferation. The signals controlling CD1 expression and lipid antigen presentation are poorly defined. We have shown previously that stimulation of the lipid-activated transcription factor, peroxisome proliferator-activated receptor (PPAR)γ, indirectly regulates CD1d expression. Here we demonstrate that PPARγ, turns on retinoic acid synthesis by inducing the expression of retinol and retinal metabolizing enzymes such as retinol dehydrogenase 10 and retinaldehyde dehydrogenase type 2 (RALDH2). PPARγ-regulated expression of these enzymes leads to an increase in the intracellular generation of all-trans retinoic acid (ATRA) from retinol. ATRA regulates gene expression via the activation of the retinoic acid receptor (RAR)α in human DCs, and RARα acutely regulates CD1d expression. The retinoic acid–induced elevated expression of CD1d is coupled to enhanced iNKT cell activation. Furthermore, in vivo relevant lipids such as oxidized low-density lipoprotein can also elicit retinoid signaling leading to CD1d up-regulation. These data show that regulation of retinoid metabolism and signaling is part of the PPARγ-controlled transcriptional events in DCs. The uncovered mechanisms allow the DCs to respond to altered lipid homeostasis by changing CD1 gene expression

    A Subset of Liver NK T Cells is Activated During \u3cem\u3eLeishmania donovani\u3c/em\u3e Infection by CD1d-Bound Lipophosphoglycan

    Get PDF
    Natural killer (NK) T cells are activated by synthetic or self-glycolipids and implicated in innate host resistance to a range of viral, bacterial, and protozoan pathogens. Despite the immunogenicity of microbial lipoglycans and their promiscuous binding to CD1d, no pathogen-derived glycolipid antigen presented by this pathway has been identified to date. In the current work, we show increased susceptibility of NK T cell–deficient CD1d−/− mice to Leishmania donovani infection and Leishmania-induced CD1d-dependent activation of NK T cells in wild-type animals. The elicited response was Th1 polarized, occurred as early as 2 h after infection, and was independent from IL-12. The Leishmania surface glycoconjugate lipophosphoglycan, as well as related glycoinositol phospholipids, bound with high affinity to CD1d and induced a CD1d-dependent IFNγ response in naive intrahepatic lymphocytes. Together, these data identify Leishmania surface glycoconjugates as potential glycolipid antigens and suggest an important role for the CD1d–NK T cell immune axis in the early response to visceral Leishmania infection

    A Subset of Liver NK T Cells Is Activated during Leishmania donovani Infection by CD1d-bound Lipophosphoglycan

    Get PDF
    Natural killer (NK) T cells are activated by synthetic or self-glycolipids and implicated in innate host resistance to a range of viral, bacterial, and protozoan pathogens. Despite the immunogenicity of microbial lipoglycans and their promiscuous binding to CD1d, no pathogen-derived glycolipid antigen presented by this pathway has been identified to date. In the current work, we show increased susceptibility of NK T cell–deficient CD1d−/− mice to Leishmania donovani infection and Leishmania-induced CD1d-dependent activation of NK T cells in wild-type animals. The elicited response was Th1 polarized, occurred as early as 2 h after infection, and was independent from IL-12. The Leishmania surface glycoconjugate lipophosphoglycan, as well as related glycoinositol phospholipids, bound with high affinity to CD1d and induced a CD1d-dependent IFNγ response in naive intrahepatic lymphocytes. Together, these data identify Leishmania surface glycoconjugates as potential glycolipid antigens and suggest an important role for the CD1d–NK T cell immune axis in the early response to visceral Leishmania infection
    corecore