44 research outputs found
Primary school student’s spiritual and moral education and digitalization of education: the search for consensus
The article offers pedagogical conditions that contribute to improve the process’ efficiency of primary school students’ spiritual and moral formation in the education’s digitalization condition
Psychological and pedagogical support for the social workers professional development
The effectiveness of psychological andpedagogical support is determined by the following factors: self-determination and voluntary participation; activating education results; taking into account and developing social workers’ educational needs; the use of the dichotomic and humanistic approaches; social workers’ selfdetermination; interactive mode of cooperation, democratic style of communicatio
Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response
Microbial RNases along with such animal RNases as onconase and BS-RNase are a promising basis for developing new antitumor drugs. We have shown that the Bacillus intermedius RNase (binase) induces selective apoptosis of transformed myeloid cells. It attacks artificially expressing activated c-Kit myeloid progenitor FDC cells and chronic myelogenous leukemia cells K562. Binase did not induce apoptosis in leukocytes of healthy donors and in normal myeloid progenitor cells. The inability of binase to initiate expression of activation markers CD69 and IFN-γ in CD4+ and CD8+ T-lymphocytes testifies that enzyme is devoid of superantigenic properties. Altogether, these results demonstrate that binase possesses therapeutic opportunities for treatment of genotyped human neoplasms expressing activated kit. © 2007 Elsevier Inc. All rights reserved
Binase cleaves cellular noncoding RNAs and affects coding mRNAs
Bacterial RNases are promising tools for the development of anticancer drugs. Neoplastic transformation leads to enhanced accumulation of rRNA and tRNA, and altered expression of regulatory noncoding RNAs. Cleavage of RNA in cancer cells is the main reason for the cytotoxic effects of exogenic RNases. We have shown that binase, a cytotoxic ribonuclease from Bacillus intermedius, affects the total amount of intracellular RNA and the expression of proapoptotic and antiapoptotic mRNAs. For four cell lines, we visualized cellular RNA by fluorescence microscopy, and determined RNA levels, viability and apoptosis by flow cytometry. We found that the level of cellular RNA was decreased in cells that were sensitive to the cytotoxic effects of binase. The RNA level was lowered by 44% in HEK cells transfected with the hSK4 gene of the Ca 2+-activated potassium channels (HEKhSK4) and by 20% in kit-transformed myeloid progenitor FDC-P1iR1171 cells. The most significant decrease in RNA levels was registered in the subpopulations of apoptotic cells. However, the binase-induced RNA decrease did not correlate with apoptosis. Kit-transformed cells with binase-induced RNA decrease retained viability if the interleukin-dependent proliferation pathway was activated. Using quantitative RT-PCR with RNA samples isolated from the binase-treated HEKhSK4 cells, we found that the amount of mRNA of the antiapoptotic bcl-2 gene in vivo was reduced about two-fold. In contrast, expression of the proapoptotic genes p53 and hSK4 was increased 1.5-fold and 4.3-fold, respectively. These results show that binase is a regulator of RNA-dependent processes of cell proliferation and apoptosis. © 2009 FEBS
Deviant behavior of youth in the context of psychology and pedagogy
The article notes that Analysis of psychological and pedagogical literature allowed us to identify the following factors influencing formation and development of various deviant behavior forms: socio-economic, sociocultural, biological, psychological, pedagogical, subcultural. Most researchers consider the violation of social norms and norms of behavior as the main criterion for deviations and consider this phenomenon in term of “adaptation (socialization) - disadaptation (de-socialization)
Oncogenic c-kit transcript is a target for binase
Mutational activation of c-Kit receptor tyrosine kinase is common in acute myelogenous leukemia. One such activating point mutation is the N822K replacement in the c-Kit protein. Here we investigate the selective cytotoxic effect of binase - RNase from Bacillus intermedius - on FDC-P1-N822K cells. These cells were derived from myeloid progenitor FDC-P1 cells, in which ectopic expression of N822K c-kit gene induces interleukin-3 independent growth. In order to determine whether the sensitivity of these cells to binase is caused by the expression of c-kit oncogene, the cytotoxicity of the RNase was studied in the presence of selective inhibitor of mutated c-Kit imatinib (Gleevec). Inhibition of mutated c-Kit protein leads to the loss of cell sensitivity to the apoptotic effect of binase, while the latter still decreases the amount of cellular RNA. Using green fluorescent protein as an expression marker for the c-Kit oncoprotein, we demonstrate that the elimination of c-Kit is the key factor in selective cytotoxicity of binase. Quantitative RT-PCR with RNA samples isolated from the binase-treated FDC-P1-N822K cells shows that binase treatment results in 41% reduction in the amount of c-kit mRNA. this indicates that the transcript of the activated mutant c-kit is the target for toxic action of binase. Thus, the combination of inhibition of oncogenic protein with the destruction of its mRNA is a promising approach to eliminating malignant cells. © 2010 Landes Bioscience
Barnase as a New Therapeutic Agent Triggering Apoptosis in Human Cancer Cells
RNases are currently studied as non-mutagenic alternatives to the harmful DNA-damaging anticancer drugs commonly used in clinical practice. Many mammalian RNases are not potent toxins due to the strong inhibition by ribonuclease inhibitor (RI) presented in the cytoplasm of mammalian cells.In search of new effective anticancer RNases we studied the effects of barnase, a ribonuclease from Bacillus amyloliquefaciens, on human cancer cells. We found that barnase is resistant to RI. In MTT cell viability assay, barnase was cytotoxic to human carcinoma cell lines with half-inhibitory concentrations (IC(50)) ranging from 0.2 to 13 microM and to leukemia cell lines with IC(50) values ranging from 2.4 to 82 microM. Also, we characterized the cytotoxic effects of barnase-based immunoRNase scFv 4D5-dibarnase, which consists of two barnase molecules serially fused to the single-chain variable fragment (scFv) of humanized antibody 4D5 that recognizes the extracellular domain of cancer marker HER2. The scFv 4D5-dibarnase specifically bound to HER2-positive cells and was internalized via receptor-mediated endocytosis. The intracellular localization of internalized scFv 4D5-dibarnase was determined by electronic microscopy. The cytotoxic effect of scFv 4D5-dibarnase on HER2-positive human ovarian carcinoma SKOV-3 cells (IC(50) = 1.8 nM) was three orders of magnitude greater than that of barnase alone. Both barnase and scFv 4D5-dibarnase induced apoptosis in SKOV-3 cells accompanied by internucleosomal chromatin fragmentation, membrane blebbing, the appearance of phosphatidylserine on the outer leaflet of the plasma membrane, and the activation of caspase-3.These results demonstrate that barnase is a potent toxic agent for targeting to cancer cells
Binase cleaves cellular noncoding RNAs and affects coding mRNAs
Bacterial RNases are promising tools for the development of anticancer drugs. Neoplastic transformation leads to enhanced accumulation of rRNA and tRNA, and altered expression of regulatory noncoding RNAs. Cleavage of RNA in cancer cells is the main reason for the cytotoxic effects of exogenic RNases. We have shown that binase, a cytotoxic ribonuclease from Bacillus intermedius, affects the total amount of intracellular RNA and the expression of proapoptotic and antiapoptotic mRNAs. For four cell lines, we visualized cellular RNA by fluorescence microscopy, and determined RNA levels, viability and apoptosis by flow cytometry. We found that the level of cellular RNA was decreased in cells that were sensitive to the cytotoxic effects of binase. The RNA level was lowered by 44% in HEK cells transfected with the hSK4 gene of the Ca 2+-activated potassium channels (HEKhSK4) and by 20% in kit-transformed myeloid progenitor FDC-P1iR1171 cells. The most significant decrease in RNA levels was registered in the subpopulations of apoptotic cells. However, the binase-induced RNA decrease did not correlate with apoptosis. Kit-transformed cells with binase-induced RNA decrease retained viability if the interleukin-dependent proliferation pathway was activated. Using quantitative RT-PCR with RNA samples isolated from the binase-treated HEKhSK4 cells, we found that the amount of mRNA of the antiapoptotic bcl-2 gene in vivo was reduced about two-fold. In contrast, expression of the proapoptotic genes p53 and hSK4 was increased 1.5-fold and 4.3-fold, respectively. These results show that binase is a regulator of RNA-dependent processes of cell proliferation and apoptosis. © 2009 FEBS
Binase induces apoptosis of transformed myeloid cells and does not induce T-cell immune response
Microbial RNases along with such animal RNases as onconase and BS-RNase are a promising basis for developing new antitumor drugs. We have shown that the Bacillus intermedius RNase (binase) induces selective apoptosis of transformed myeloid cells. It attacks artificially expressing activated c-Kit myeloid progenitor FDC cells and chronic myelogenous leukemia cells K562. Binase did not induce apoptosis in leukocytes of healthy donors and in normal myeloid progenitor cells. The inability of binase to initiate expression of activation markers CD69 and IFN-γ in CD4+ and CD8+ T-lymphocytes testifies that enzyme is devoid of superantigenic properties. Altogether, these results demonstrate that binase possesses therapeutic opportunities for treatment of genotyped human neoplasms expressing activated kit. © 2007 Elsevier Inc. All rights reserved
Binase cleaves cellular noncoding RNAs and affects coding mRNAs
Bacterial RNases are promising tools for the development of anticancer drugs. Neoplastic transformation leads to enhanced accumulation of rRNA and tRNA, and altered expression of regulatory noncoding RNAs. Cleavage of RNA in cancer cells is the main reason for the cytotoxic effects of exogenic RNases. We have shown that binase, a cytotoxic ribonuclease from Bacillus intermedius, affects the total amount of intracellular RNA and the expression of proapoptotic and antiapoptotic mRNAs. For four cell lines, we visualized cellular RNA by fluorescence microscopy, and determined RNA levels, viability and apoptosis by flow cytometry. We found that the level of cellular RNA was decreased in cells that were sensitive to the cytotoxic effects of binase. The RNA level was lowered by 44% in HEK cells transfected with the hSK4 gene of the Ca 2+-activated potassium channels (HEKhSK4) and by 20% in kit-transformed myeloid progenitor FDC-P1iR1171 cells. The most significant decrease in RNA levels was registered in the subpopulations of apoptotic cells. However, the binase-induced RNA decrease did not correlate with apoptosis. Kit-transformed cells with binase-induced RNA decrease retained viability if the interleukin-dependent proliferation pathway was activated. Using quantitative RT-PCR with RNA samples isolated from the binase-treated HEKhSK4 cells, we found that the amount of mRNA of the antiapoptotic bcl-2 gene in vivo was reduced about two-fold. In contrast, expression of the proapoptotic genes p53 and hSK4 was increased 1.5-fold and 4.3-fold, respectively. These results show that binase is a regulator of RNA-dependent processes of cell proliferation and apoptosis. © 2009 FEBS