44 research outputs found

    Monitoring of solar spectral ultraviolet irradiance in Aosta, Italy

    Get PDF
    A Bentham DTMc300 spectrophotometer is deployed at the station of Aosta–Saint-Christophe, Italy, at the headquarters of the Regional Environmental Protection Agency (ARPA) and performs continuous high quality spectral measurements of the solar ultraviolet (UV) irradiance since 2006. The measuring site is located in the North-western of the Alps, in a large valley floor at the altitude of 570 m a.s.l., surrounded by mountains. It is very significant to have accurate measurements in such a sensitive environment, since the complex terrain and the strongly variable meteo-climatic conditions typical of the Alps induce large spatial and temporal variability in the surface levels of the solar UV irradiance. The spectroradiometer is moreover used as a reference of a regional UV network, with additional stations located at different altitudes (1640 and 3500 m a.s.l.) and environmental conditions (mountain and glacier). In the present study we discuss the procedures and the technical aspects which ensure the high quality of the measurements performed by the reference instrument, and subsequently of the entire network. In particular, we describe the procedures used to characterize the Bentham for its characteristics which affect the quality of the measurements. The used Quality Control/Quality Assurance (QA/QC) procedures are also discussed. We show that the good quality of the spectral measurements is further ensured by a strong traceability chain to the world reference QASUME and a strict calibration protocol. Recently, the spectral UV dataset of Aosta–Saint-Christophe has been re-evaluated and homogenized. The final spectra consist one of the most accurate datasets globally. At wavelengths above 310 nm and for solar zenith angles below 75° the expanded uncertainty in the final dataset decreases with time, from 7% in 2006 to 4% in the present. The present study not only serves as the reference document for any future use of the data, but also provides useful information for experiments and novel techniques which have been applied for the characterization of the instrument, and the QA/QC of the spectral UV measurements. Furthermore, the study clearly shows that maintaining a strong traceability chain to a reference instrument is critical for the good quality of the measurements. The studied spectral dataset is freely accessible at https://doi.org/10.5281/zenodo.3934324 (Fountoulakis et al., 2020)

    Dispersion test results with multiple geometries at RBCC-E campaign AROSA 2014

    Get PDF
    Presentación realizada para el MC and WG meeting celebrado en Delft (Países Bajos) del 11 al 12 de noviembre de 201

    Dead time effect on the Brewer measurements: correction and estimated uncertainties

    Get PDF
    Brewer spectrophotometers are widely used instruments which perform spectral measurements of the direct, the scattered and the global solar UV irradiance. By processing these measurements a variety of secondary products can be derived such as the total columns of ozone (TOC), sulfur dioxide and nitrogen dioxide and aerosol optical properties. Estimating and limiting the uncertainties of the final products is of critical importance. High-quality data have a lot of applications and can provide accurate estimations of trends

    Sensitivity study of the instrumental temperature corrections on Brewer total ozone column measurements

    Get PDF
    The instrumental temperature corrections to be applied to the ozone measurements by the Brewer spectrophotometers are derived from the irradiance measurements of internal halogen lamps in the instruments. These characterizations of the Brewer spectrophotometers can be carried out within a thermal chamber, varying the temperature from -5 to +45ºC, or during field measurements, making use of the natural change in ambient temperature. However, the internal light source used to determine the thermal sensitivity of the instrument could be affected in both methods by the temperature variations as well, which may affect the determination of the temperature coefficients. In order to validate the standard procedures for determining Brewer’s temperature coefficients, two independent experiments using both external light sources and the internal halogen lamps have been performed within the ATMOZ Project. The results clearly show that the traditional methodology based on the internal halogen lamps is not sensitive to the temperature-caused changes in the spectrum of the internal light source. The three methodologies yielded equivalents results, with differences in total ozone column below 0.08% for a mean diurnal temperature variation of 10ºC.This work has been supported by the European Metrology Research Programme (EMRP) within the joint research project ENV59 “Traceability for atmospheric total column ozone” (ATMOZ)

    Spectral UV measurements within the EUropean BREWer NETwork: COST Action ES1207 (2013-2017)

    Get PDF
    Presentación realizada en: European Conference on Solar UV Monitoring-ECUVM, celebrada en Viena del 12 al 14 de septiembre de 2018

    Second solar ultraviolet radiometer comparison campaign UVC-II

    Get PDF
    In 2017, PMOD/WRC organised the solar ultraviolet broadband radiometer comparison campaign UVC-II. All 75 participating instruments from all over the world were characterised in the laboratory of the World Calibration Center for UV (WCCUV) and calibrated outdoors relative to the Qasume reference spectroradiometer. After a three month calibration period, all devices were returned to their owners, accompanied by a certificate demonstrating traceability to the international system of units. The calibration uncertainty stated in these certificates was less than 6% for the majority of the radiometers. The deviation to the original calibration factors was analysed. From this data we determined three components affecting the overall measurement uncertainty of solar UV measurements using broadband radiometers on different time scales: Usage of additional correction factors to the absolute calibration factor, control of the humidity inside the device and recalibration frequency. A subset of radiometers participating in the campaign were calibrated and characterised at their home laboratories. A comparison of the calibration factors shows that the USER- and the WCCUV-calibrations agree within the uncertainties for 9 out of 11 calibrations

    Ozone, DNA-active UV radiation, and cloud changes for the near-global mean and at high latitudes due to enhanced greenhouse gas concentrations

    Get PDF
    This study analyses the variability and trends of ultraviolet-B (UV-B, wavelength 280–320 nm) radiation that can cause DNA damage. The variability and trends caused by climate change due to enhanced greenhouse gas (GHG) concentrations. The analysis is based on DNA-active irradiance, total ozone, total cloud cover, and surface albedo calculations with the European Centre for Medium-Range Weather Forecasts – Hamburg (ECHAM)/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) chemistry–climate model (CCM) free-running simulations following the RCP 6.0 climate scenario for the period 1960–2100. The model output is evaluated with DNA-active irradiance ground-based measurements, satellite SBUV (v8.7) total-ozone measurements, and satellite MODerate-resolution Imaging Spectroradiometer (MODIS) Terra cloud cover data. The results show that the model reproduces the observed variability and change in total ozone, DNA-active irradiance, and cloud cover for the period 2000–2018 quite well according to the statistical comparisons. Between 50∘ N–50∘ S, the DNA-damaging UV radiation is expected to decrease until 2050 and to increase thereafter, as was shown previously by Eleftheratos et al. (2020). This change is associated with decreases in the model total cloud cover and negative trends in total ozone after about 2050 due to increasing GHGs. The new study confirms the previous work by adding more stations over low latitudes and mid-latitudes (13 instead of 5 stations). In addition, we include estimates from high-latitude stations with long-term measurements of UV irradiance (three stations in the northern high latitudes and four stations in the southern high latitudes greater than 55∘). In contrast to the predictions for 50∘ N–50∘ S, it is shown that DNA-active irradiance will continue to decrease after the year 2050 over high latitudes because of upward ozone trends. At latitudes poleward of 55∘ N, we estimate that DNA-active irradiance will decrease by 8.2 %±3.8 % from 2050 to 2100. Similarly, at latitudes poleward of 55∘ S, DNA-active irradiance will decrease by 4.8 % ± 2.9 % after 2050. The results for the high latitudes refer to the summer period and not to the seasons when ozone depletion occurs, i.e. in late winter and spring. The contributions of ozone, cloud, and albedo trends to the DNA-active irradiance trends are estimated and discussed.</p
    corecore