39 research outputs found

    The high kinetic stability of a G-quadruplex limits hnRNP F qRRM3 binding to G-tract RNA

    Get PDF
    The RNA binding protein heterogeneous nuclear ribonucleoprotein (hnRNP) F is involved in telomeres maintenance and pre-mRNA processing, such as alternative splicing and polyadenylation. It specifically recognizes RNA containing three consecutive guanines (G-tracts) that have the potential to assemble into G-quadruplexes. We have proposed recently that hnRNP F could regulate alternative splicing by remodeling RNA structures, such as G-quadruplexes. However, the exact mechanism of hnRNP F binding to such RNA sequences remains unknown. Here, we have studied the binding of the third RNA binding domain of hnRNP F [quasi-RNA recognition motif 3 (qRRM3)] to G-tract RNA using isothermal titration calorimetry, circular dichroism and nuclear magnetic resonance spectroscopy. Our results show that qRRM3 binds specifically exclusively to single-stranded G-tracts (ssRNA), in contrast to previous reports stating that the G-quadruplex was recognized as well. Furthermore, we demonstrate that the pre-existent ssRNA/G-quadruplex equilibrium slows down the formation of the protein-ssRNA complex. Based on in vitro transcription assays, we show that the rate of the protein-RNA complex formation is faster than that of the G-quadruplex. We propose a model according to which hnRNP F could bind RNA co-transcriptionally and prevents G-quadruplex formatio

    Toward universal protein post-translational modification detection in high throughput format

    Get PDF
    Post-translational modification (PTM) of proteins plays essential regulatory roles in a variety of pathological conditions. Reliable and practical assays are required to accelerate the discovery of inhibitors and activators for PTM related diseases. Today, methodologies are based on specific or group-specific PTM recognition of e.g. phosphate for kinase activity without extending to other type of PTMs. Here we have established a universal time-resolved luminescence assay on a peptide-break platform for the direct detection of wide variety of PTMs. The developed assay is based on the leucine zipper concept wherein a europium-chelate labeled detection peptide and a non-labeled peptide substrate form a highly luminescent dimer. As an active PTM enzyme at sub or low nanomolar concentration modifies the substrate peptide, the luminescent signal of the detached detection peptide is quenched in the presence of soluble quenchers. The functionality of this universal assay technique has been demonstrated for the monitoring of phosphorylation, dephosphorylation, deacetylation, and citrullination with high applicability also to other PTMs in a high throughput format.Peer reviewe

    Toward universal protein post-translational modification detection in high throughput format

    Get PDF
    Post-translational modification (PTM) of proteins plays essential regulatory roles in a variety of pathological conditions. Reliable and practical assays are required to accelerate the discovery of inhibitors and activators for PTM related diseases. Today, methodologies are based on specific or group-specific PTM recognition of e.g. phosphate for kinase activity without extending to other type of PTMs. Here we have established a universal time-resolved luminescence assay on a peptide-break platform for the direct detection of wide variety of PTMs. The developed assay is based on the leucine zipper concept wherein a europium-chelate labeled detection peptide and a non-labeled peptide substrate form a highly luminescent dimer. As an active PTM enzyme at sub or low nanomolar concentration modifies the substrate peptide, the luminescent signal of the detached detection peptide is quenched in the presence of soluble quenchers. The functionality of this universal assay technique has been demonstrated for the monitoring of phosphorylation, dephosphorylation, deacetylation, and citrullination with high applicability also to other PTMs in a high throughput format

    Probing the energetic and kinetic impact of topologically conserved interactions in the SIV gp41 six-helix bundle

    Full text link
    In this study we used an engineered six-helix bundle construct corresponding to the fusogenic core of the SIV gp41 protein as a model system to investigate the folding of a trimeric protein, which acquires a compact structure upon association of largely unstructured monomeric peptides. Thirteen mutants were generated in order to gain information about the thermodynamic and kinetic roles of topologically conserved tertiary interactions to folding and stability. The effect of the mutations was assessed by circular dichroism spectroscopy from urea-induced equilibrium unfolding experiments and in time-resolved mode to follow the kinetics of refolding and unfolding. While individual experiments can be interpreted in terms of a simple monomer-trimer refolding/unfolding reaction mechanism, comparison of equilibrium and kinetic data reveals that some variants clearly deviate from this two-state behavior and that most proteins cannot be classified as two-state folders without some reservations. Nevertheless, following "quasi-φ-value" and "quasi-β(T)-value" analyses, we propose that the highest-energy barrier along the folding pathway is passed in the trimeric state, after the C-terminal half of each monomer chain is "fixed" in anti-parallel orientation to the surface of the central, still nascent N-terminal coiled-coil

    Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs

    Get PDF
    RNA recognition motifs (RRMs) are structurally versatile domains important in regulation of alternative splicing. Structural mechanisms of sequence-specific recognition of single-stranded RNAs (ssRNAs) by RRMs are well understood. The thermodynamic strategies are however unclear. Therefore, we utilized microcalorimetry and semi-empirical analyses to comparatively analyze the cognate ssRNA binding thermodynamics of four different RRM domains, each with a different RNA binding mode. The different binding modes are: canonical binding to the β-sheet surface; canonical binding with involvement of N- and C-termini; binding to conserved loops; and binding to an α-helix. Our results identify enthalpy as the sole and general force driving association at physiological temperatures. Also, networks of weak interactions are a general feature regulating stability of the different RRM-ssRNA complexes. In agreement, non-polyelectrolyte effects contributed between ∼75 and 90% of the overall free energy of binding in the considered complexes. The various RNA binding modes also displayed enormous heat capacity differences, that upon dissection revealed large differential changes in hydration, conformations and dynamics upon binding RNA. Altogether, different modes employed by RRMs to bind cognate ssRNAs utilize various thermodynamics strategies during the association process

    Real-time assessment of possible electromagnetic-field-induced changes in protein conformation and thermal stability

    Full text link
    Previous studies on possible interactions of radiofrequency electromagnetic fields (RF EMFs) with proteins have suggested that RF EMFs might affect protein structure and folding kinetics. In this study, the isolated thermosensor protein GrpE of the Hsp70 chaperone system of Escherichia coli was exposed to EMFs of various frequencies and field strengths under strictly controlled conditions. Circular dichroism spectroscopy was used to monitor possible structural changes. Simultaneously, temperature was recorded at each point of observation. The coiled-coil part of GrpE has been reported to undergo a well-defined and fully reversible folding/unfolding transition, thus facilitating the differentiation between thermal and non-thermal effects of RF EMFs. Any direct effect of EMF on the conformation and/or stability would result in a shift of the conformational equilibrium of the protein at a given temperature. Possible immediate (t ≤ 0.1 s) and delayed (t ≥ 30 s) effects of RF EMFs were investigated with sinusoidal signals of 0.1, 1.0, and 1.9 GHz at various field strengths up to 5.0 kV/m and with GSM signals at 0.3 kV/m in the protein solution. Taking the overall uncertainty of the experimental system into account, possible RF EMF-induced shifts in the conformational equilibrium of less than 1% of its total range might have been detected. The results obtained with the different experimental protocols indicate, however, that the conformational equilibrium of GrpE is insensitive to electromagnetic fields in the tested range of frequency and field strength
    corecore