1,885 research outputs found
RETURN ON INVESTMENT IN SOCIAL NETWORKS
This review focuses on electrochemical metallization memory cells (ECM), highlighting their advantages as the next generation memories. In a brief introduction, the basic switching mechanism of ECM cells is described and the historical development is sketched. In a second part, the full spectra of materials and material combinations used for memory device prototypes and for dedicated studies are presented. In a third part, the specific thermodynamics and kinetics of nanosized electrochemical cells are described. The overlapping of the space charge layers is found to be most relevant for the cell properties at rest. The major factors determining the functionality of the ECM cells are the electrode reaction and the transport kinetics. Depending on electrode and/or electrolyte material electron transfer, electro-crystallization or slow diffusion under strong electric fields can be rate determining. In the fourth part, the major device characteristics of ECM cells are explained. Emphasis is placed on switching speed, forming and SET/RESET voltage, R(ON) to R(OFF) ratio, endurance and retention, and scaling potentials. In the last part, circuit design aspects of ECM arrays are discussed, including the pros and cons of active and passive arrays. In the case of passive arrays, the fundamental sneak path problem is described and as well as a possible solution by two anti-serial (complementary) interconnected resistive switches per cell. Furthermore, the prospects of ECM with regard to further scalability and the ability for multi-bit data storage are addressed
Theory for the optimal control of time-averaged quantities in open quantum systems
We present variational theory for optimal control over a finite time interval
in quantum systems with relaxation. The corresponding Euler-Lagrange equations
determining the optimal control field are derived. In our theory the optimal
control field fulfills a high order differential equation, which we solve
analytically for some limiting cases. We determine quantitatively how
relaxation effects limit the control of the system. The theory is applied to
open two level quantum systems. An approximate analytical solution for the
level occupations in terms of the applied fields is presented. Different other
applications are discussed
Unveiling the Crucial Intermediates in Androgen Production
Significance: The human enzyme cytochrome P450 17A1 (CYP17A1) catalyzes the critical step in the biosynthesis of the male sex hormones, and, as such, it is a key target for the inhibition of testosterone production that is necessary for the progression of certain cancers. CYP17A1 catalyzes two distinct types of chemical transformations. The first is the hydroxylation of the steroid precursors pregnenolone and progesterone. The second is a different reaction involving carbon–carbon (C-C) bond cleavage, the mechanism of which has been actively debated in the literature. Using a combination of chemical and biophysical methods, we have been able to trap and characterize the active intermediate in this C-C lyase reaction, an important step in the potential design of mechanism-based inhibitors for the treatment of prostate cancers.
Abstract: Ablation of androgen production through surgery is one strategy against prostate cancer, with the current focus placed on pharmaceutical intervention to restrict androgen synthesis selectively, an endeavor that could benefit from the enhanced understanding of enzymatic mechanisms that derives from characterization of key reaction intermediates. The multifunctional cytochrome P450 17A1 (CYP17A1) first catalyzes the typical hydroxylation of its primary substrate, pregnenolone (PREG) and then also orchestrates a remarkable C17–C20 bond cleavage (lyase) reaction, converting the 17-hydroxypregnenolone initial product to dehydroepiandrosterone, a process representing the first committed step in the biosynthesis of androgens. Now, we report the capture and structural characterization of intermediates produced during this lyase step: an initial peroxo-anion intermediate, poised for nucleophilic attack on the C20 position by a substrate-associated H-bond, and the crucial ferric peroxo-hemiacetal intermediate that precedes carbon–carbon (C-C) bond cleavage. These studies provide a rare glimpse at the actual structural determinants of a chemical transformation that carries profound physiological consequences
Sparticle Spectroscopy with Neutralino Dark matter from t-b-tau Quasi-Yukawa Unification
We consider two classes of t-b-tau quasi-Yukawa unification scenarios which
can arise from realistic supersymmetric SO(10) and SU(4)_C X SU(2)_L X SU(2)_R
models. We show that these scenarios can be successfully implemented in the
CMSSM and NUHM1 frameworks, and yields a variety of sparticle spectra with WMAP
compatible neutralino dark matter. In NUHM1 we find bino-higgsino dark matter
as well as the stau coannihilation and A-funnel solutions. The CMSSM case
yields the stau coannihilation and A-funnel solutions. The gluino and squark
masses are found to lie in the TeV range.Comment: 21 pages, 12 figures, 2 table
Resonance Raman Characterization of the Peroxo and Hydroperoxo Intermediates in Cytochrome P450
Resonance Raman (RR) studies of intermediates generated by cryoreduction of the oxyferrous complex of the D251N mutant of cytochrome P450cam (CYP101) are reported. Owing to the fact that proton delivery to the active site is hindered in this mutant, the unprotonated peroxo-ferric intermediate is observed as the primary species after radiolytic reduction of the oxy-complex in frozen solutions at 77 K. In as much as previous EPR and ENDOR studies have shown that annealing of this species to ∼180 K results in protonation of the distal oxygen atom to form the hydroperoxo intermediate, this system has been exploited to permit direct RR interrogation of the changes in the Fe−O and O−O bonds caused by the reduction and subsequent protonation. Our results show that the ν(O−O) mode decreases from a superoxo-like frequency near ∼1130 cm−1 to 792 cm−1 upon reduction. The latter frequency, as well as its lack of sensitivity to H/D exchange, is consistent with heme-bound peroxide formulation. This species also exhibits a ν(Fe−O) mode, the 553 cm−1 frequency of which is higher than that observed for the nonreduced oxy P450 precursor (537 cm−1), implying a strengthened Fe−O linkage upon reduction. Upon subsequent protonation, the resulting Fe−O−OH fragment exhibits a lowered ν(O−O) mode at 774 cm−1, whereas the ν(Fe−O) increases to 564 cm−1. Both modes exhibit a downshift upon H/D exchange, as expected for a hydroperoxo-ferric formulation. These experimental RR data are compared with those previously acquired for the wild-type protein, and the shifts observed upon reduction and subsequent protonation are discussed with reference to theoretical predictions
Defining CYP3A4 Structural Responses to Substrate Binding. Raman Spectroscopic Studies of a Nanodisc-incorporated Mammalian Cytochrome P450
Resonance Raman (RR) spectroscopy is used to help define active site structural responses of nanodisc-incorporated CYP3A4 to the binding of three substrates: bromocriptine (BC), erythromycin (ERY), and testosterone (TST). We demonstrate that nanodisc-incorporated assemblies reveal much more well-defined active site RR spectroscopic responses as compared to those normally obtained with the conventional, detergent-stabilized, sampling strategies. While ERY and BC are known to bind to CYP3A4 with a 1:1 stoichiometry, only the BC induces a substantial conversion from low- to high-spin state, as clearly manifested in the RR spectra acquired herein. The third substrate, TST, displays significant homotropic interactions within CYP3A4, the active site binding up to 3 molecules of this substrate, with the functional properties varying in response to binding of individual substrate molecules. While such behavior seemingly suggests the possibility that each substrate binding event induces functionally important heme structural changes, up to this time spectroscopic evidence for such structural changes has not been available. The current RR spectroscopic studies show clearly that accommodation of different size substrates, and different loading of TST, do not significantly affect the structure of the substrate-bound ferric heme. However, it is here demonstrated that the nature and number of bound substrates do have an extraordinary influence on the conformation of bound exogenous ligands, such as CO or dioxygen and its reduced forms, implying an effective mechanism whereby substrate structure can impact reactivity of intermediates so as to influence function, as reflected in the diverse reactivity of this drug metabolizing cytochrome
Evidence That Cytochrome \u3cem\u3eb\u3csub\u3e5\u3c/sub\u3e\u3c/em\u3e Acts as a Redox Donor in CYP17A1 Mediated Androgen Synthesis
Cytochrome P450 17A1 (CYP17A1) is an important drug target for castration resistant prostate cancer. It is a bi-functional enzyme, catalyzing production of glucocorticoid precursors by hydroxylation of pregnene-nucleus, and androgen biosynthesis by a second C--C lyase step, at the expense of glucocorticoid production. Cytochrome b5(cyt b5) is known to be a key regulator of the androgen synthesis reaction in vivo, by a mechanism that is not well understood. Two hypotheses have been proposed for the mechanism by which cyt b5 increases androgen biosynthesis. Cyt b5 could act as an allosteric effector, binding to CYP17A1 and either changing its selective substrate affinity or altering the conformation of the P450 to increase the catalytic rate or decrease unproductive uncoupling channels. Alternatively, cyt b5 could act as a redox donor for supply of the second electron in the P450 cycle, reducing the oxyferrous complex to form the reactive peroxo-intermediate. To understand the mechanism of lyase enhancement by cyt b5, we generated a redox-inactive form of cyt b5, in which the heme is replaced with a Manganese-protoporphyrin IX (Mn-b5), and investigated enhancement of androgen producing lyase reaction by CYP17A1. Given the critical significance of a stable membrane anchor for all of the proteins involved and the need for controlled stoichiometric ratios, we employed the Nanodisc system for this study. The redox inactive form was observed to have no effect on the lyase reaction, while reactions with the normal heme-iron containing cyt b5 were enhanced ∼5 fold as compared to reactions in the absence of cyt b5. We also performed resonance Raman measurements on ferric CYP17A1 bound to Mn-b5. Upon addition of Mn-b5 to Nanodisc reconstituted CYP17A1, we observed clear evidence for the formation of a b5-CYP17A1 complex, as noted by changes in the porphyrin modes and alteration in the proximal Fe--S vibrational frequency. Thus, although Mn-b5 binds to CYP17A1, it is unable to enhance the lyase reaction, strongly suggesting that cyt b5 has a redox effector role in enhancement of the CYP17A1 mediated lyase reaction necessary for androgen synthesis
The Use of Isomeric Testosterone Dimers to Explore Allosteric Effects in Substrate Binding to Cytochrome P450 CYP3A4
Abstract: Cytochrome P450 CYP3A4 is the main drug-metabolizing enzyme in the human liver, being responsible for oxidation of 50% of all pharmaceuticals metabolized by human P450 enzymes. Possessing a large substrate binding pocket, it can simultaneously bind several substrate molecules and often exhibits a complex pattern of drug–drug interactions. In order to better understand structural and functional aspects of binding of multiple substrate molecules to CYP3A4 we used resonance Raman and UV–VIS spectroscopy to document the effects of binding of synthetic testosterone dimers of different configurations, cis-TST2 and trans-TST2. We directly demonstrate that the binding of two steroid molecules, which can assume multiple possible configurations inside the substrate binding pocket of monomeric CYP3A4, can lead to active site structural changes that affect functional properties. Using resonance Raman spectroscopy, we have documented perturbations in the ferric and Fe-CO states by these substrates, and compared these results with effects caused by binding of monomeric TST. While the binding of trans-TST2 yields results similar to those obtained with monomeric TST, the binding of cis-TST2 is much tighter and results in significantly more pronounced conformational changes of the porphyrin side chains and Fe-CO unit. In addition, binding of an additional monomeric TST molecule in the remote allosteric site significantly improves binding affinity and the overall spin shift for CYP3A4 with trans-TST2 dimer bound inside the substrate binding pocket. This result provides the first direct evidence for an allosteric effect of the peripheral binding site at the protein-membrane interface on the functional properties of CYP3A4.
Graphical abstract: Synthetic dimers of the steroid testosterone are used to address directly the mechanisms of multiple substrate binding at the active site of cytochrome P450 3A4 and the role of substrate binding at a distal site in the control of allostery in this central enzyme of human drug metabolism
Infections with Ehrlichia canis and Borrelia burgdorferi in a dog
A clinical case of Ehrlichia canis and Borrelia burgdorferi infections in a 5year-old male German Shepherd is described. Clinical, serological, necropsy and histopathological examinations supporting the diagnosis have been performed
- …