8 research outputs found

    Fused 1,2,3-dithiazoles: convenient synthesis, structural characterization, and electrochemical properties

    Get PDF
    A new general protocol for synthesis of fused 1,2,3-dithiazoles by the reaction of cyclic oximes with S2Cl2 and pyridine in acetonitrile has been developed. The target 1,2,3-dithiazoles fused with various carbocycles, such as indene, naphthalenone, cyclohexadienone, cyclopentadiene, and benzoannulene, were selectively obtained in low to high yields. In most cases, the hetero ring-closure was accompanied by chlorination of the carbocyclic moieties. With naphthalenone derivatives, a novel dithiazole rearrangement (15→13) featuring unexpected movement of the dithiazole ring from α- to β-position, with respect to keto group, was discovered. Molecular structure of 4-chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13 was confirmed by single-crystal X-ray diffraction. Electrochemical properties of 13 were studied by cyclic voltammetry and a complex behavior was observed, most likely including hydrodechlorination at a low potential

    Fused 1,2,3-dithiazoles: convenient synthesis, structural characterization, and electrochemical properties

    No full text
    A new general protocol for synthesis of fused 1,2,3-dithiazoles by the reaction of cyclic oximes with S2Cl2 and pyridine in acetonitrile has been developed. The target 1,2,3-dithiazoles fused with various carbocycles, such as indene, naphthalenone, cyclohexadienone, cyclopentadiene, and benzoannulene, were selectively obtained in low to high yields. In most cases, the hetero ring-closure was accompanied by chlorination of the carbocyclic moieties. With naphthalenone derivatives, a novel dithiazole rearrangement (15→13) featuring unexpected movement of the dithiazole ring from α- to β-position, with respect to keto group, was discovered. Molecular structure of 4-chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13 was confirmed by single-crystal X-ray diffraction. Electrochemical properties of 13 were studied by cyclic voltammetry and a complex behavior was observed, most likely including hydrodechlorination at a low potential

    Synthesis and comparison of substituted 1,2,3-dithiazole and 1,2,3-thiaselenazole as inhibitors of the feline immunodeficiency virus (FIV) nucleocapsid protein as a model for HIV infection

    Full text link
    We report the first biological evaluation the 1,2,3-thiaselenazole class of compound and utilising a concise synthetic approach of sulfur extrusion, selenium insertion of the 1,2,3-dithiazoles. We created a small diverse library of compounds to contrast the two ring systems. This approach has highlighted new structure activity relationship insights and lead to the development of sub-micro molar anti-viral compounds with reduced toxicity. The 1,2,3-thiaselenazole represents a new class of potential compounds for the treatment of FIV and HIV

    Fused 1,2,3-Dithiazoles: Convenient Synthesis, Structural Characterization, and Electrochemical Properties

    Get PDF
    A new general protocol for synthesis of fused 1,2,3-dithiazoles by the reaction of cyclic oximes with S2Cl2 and pyridine in acetonitrile has been developed. The target 1,2,3-dithiazoles fused with various carbocycles, such as indene, naphthalenone, cyclohexadienone, cyclopentadiene, and benzoannulene, were selectively obtained in low to high yields. In most cases, the hetero ring-closure was accompanied by chlorination of the carbocyclic moieties. With naphthalenone derivatives, a novel dithiazole rearrangement (15→13) featuring unexpected movement of the dithiazole ring from α- to β-position, with respect to keto group, was discovered. Molecular structure of 4-chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13 was confirmed by single-crystal X-ray diffraction. Electrochemical properties of 13 were studied by cyclic voltammetry and a complex behavior was observed, most likely including hydrodechlorination at a low potential

    Fused 1,2,3-Dithiazoles: Convenient Synthesis, Structural Characterization, and Electrochemical Properties

    Get PDF
    A new general protocol for synthesis of fused 1,2,3-dithiazoles by the reaction of cyclic oximes with S2Cl2 and pyridine in acetonitrile has been developed. The target 1,2,3-dithiazoles fused with various carbocycles, such as indene, naphthalenone, cyclohexadienone, cyclopentadiene, and benzoannulene, were selectively obtained in low to high yields. In most cases, the hetero ring-closure was accompanied by chlorination of the carbocyclic moieties. With naphthalenone derivatives, a novel dithiazole rearrangement (15→13) featuring unexpected movement of the dithiazole ring from α- to β-position, with respect to keto group, was discovered. Molecular structure of 4-chloro-5H-naphtho[1,2-d][1,2,3]dithiazol-5-one 13 was confirmed by single-crystal X-ray diffraction. Electrochemical properties of 13 were studied by cyclic voltammetry and a complex behavior was observed, most likely including hydrodechlorination at a low potential

    The Conversion of 5,5′-Bi(1,2,3-dithiazolylidenes) into Isothiazolo[5,4-d]isothiazoles

    No full text
    Thermolysis of 4,4′-dichloro-, 4,4′-diaryl-, and 4,4′-di(thien-2-yl)-5,5′-bi(1,2,3-dithiazol-ylidenes) affords the respective 3,6-dichloro-, 3,6-diaryl- and 3,6-di(thien-2-yl)isothiazolo[5,4-d]-isothiazoles in low to high yields. The transformation of the 4,4′-diaryl- and 4,4′-di(thien-2-yl)-5,5′-bi(1,2,3-dithiazolylidenes) occurs at lower temperatures in the presence of the thiophiles triphenylphosphine or tetraethylammonium iodide. Optimized reaction conditions and a mechanistic rationale for the thiophile-mediated ring transformation are presented
    corecore