94 research outputs found

    Nonequilibrium dynamics and magnetoviscosity of moderately concentrated magnetic liquids: A dynamic mean--field study

    Get PDF
    A mean-field Fokker-Planck equation approach to the dynamics of ferrofluids in the presence of a magnetic field and velocity gradients is proposed that incorporates magnetic dipole-dipole interactions of the colloidal particles. The model allows to study the combined effect of a magnetic field and dipolar interactions on the viscosity of the ferrofluid. It is found that dipolar interactions lead to additional non-Newtonian contributions to the stress tensor, which modify the behavior of the non-interacting system. The predictions of the present model are in qualitative agreement with experimental results, such as presence of normal stress differences, enhancement and different anisotropy of magnetoviscous effect and the dependence of the viscosity on the hydrodynamic volume fraction. A quantitative comparison of the concentration dependence of the magnetoviscosity shows good agreement with experimental results for low concentrations.Comment: 12 pages, 5 figure

    Magneto-Permeability Effect in Ferrofluid Flow through Porous Media studied via Multiparticle Collision Dynamics

    Full text link
    As more and more promising applications of magnetic nanoparticles in complicated environments are explored, their flow properties in porous media are of increasing interest. We here propose a hybrid approach based on the Multiparticle Collision Dynamics Method extended to porous media via friction forces and coupled with Brownian Dynamics simulations of the rotational motion of magnetic nanoparticles' magnetic moment. We simulate flow in planar channels homogeneously filled with a porous medium and verify our implementation by reproducing the analytical velocity profile of the Darcy-Brinkman model in the non-magnetic case. In the presence of an externally applied magnetic field, the non-equilibrium magnetization and friction forces lead to field-dependent velocity profiles that result in effective, field-dependent permeabilities. We provide a theoretical expression for this magneto-permeability effect in analogy with the magneto-viscous effect. Finally, we study the flow through planar channels, where only the walls are covered with a porous medium. We find a smooth crossover from the Poiseuille profile in the center of the channel to the Brinkman-Darcy flow in the porous layers. We propose a simple estimate of the thickness of the porous layer based on the flow rate and maximum flow velocity.Comment: 22 pages, 8 figure
    • …
    corecore