
Entanglement dynamics at flat surfaces: 
investigations using multi­chain molecular 
dynamics and a single­chain slip­spring 
model 
Article 

Accepted Version 

Kirk, J., Wang, Z. and Ilg, P. (2019) Entanglement dynamics at 
flat surfaces: investigations using multi­chain molecular 
dynamics and a single­chain slip­spring model. The Journal of 
Chemical Physics, 150 (9). 094906. ISSN 0021­9606 doi: 
https://doi.org/10.1063/1.5045301 Available at 
http://centaur.reading.ac.uk/82599/ 

It is advisable to refer to the publisher’s version if you intend to cite from the 
work.  See Guidance on citing  .

To link to this article DOI: http://dx.doi.org/10.1063/1.5045301 

Publisher: American Institute of Physics 

All outputs in CentAUR are protected by Intellectual Property Rights law, 
including copyright law. Copyright and IPR is retained by the creators or other 
copyright holders. Terms and conditions for use of this material are defined in 
the End User Agreement  . 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Central Archive at the University of Reading

https://core.ac.uk/display/188183846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://centaur.reading.ac.uk/71187/10/CentAUR%20citing%20guide.pdf
http://centaur.reading.ac.uk/licence


www.reading.ac.uk/centaur   

CentAUR 

Central Archive at the University of Reading 

Reading’s research outputs online

http://www.reading.ac.uk/centaur


Entanglement dynamics at flat surfaces: investigations using multi-chain Molecular

Dynamics and a single-chain slip-spring model

Jack Kirk,1 Zuowei Wang,1 and Patrick Ilg1

School of Mathematical, Physical and Computational Sciences,

University of Reading, Reading RG6 6AX, UKa)

(Dated: 4 March 2019)

The dynamics of an entangled polymer melt confined in a channel by parallel plates

is investigated by Molecular Dynamics (MD) simulations of a detailed, multi-chain

model. A Primitive Path Analysis predicts that the density of entanglements remains

approximately constant throughout the gap and drops to lower values only in the

immediate vicinity of the surface. Based on these observations, we propose a coarse-

grained, single-chain slip-spring model with a uniform density of slip-spring anchors

and slip-links. The slip-spring model is compared to the Kremer-Grest MD bead-

spring model via equilibrium correlation functions of chain orientations. Reasonably

good agreement between the single-chain model and the detailed multi-chain model

is obtained for chain relaxation dynamics, both away from the surface and for chains

whose center of mass positions are at a distance from the surface that is less than the

bulk chain radius of gyration, without introducing any additional model parameters.

Our results suggest that there is no considerable drop in topological interactions for

chains in the vicinity of a single flat surface. We infer from the slip-spring model that

the experimental plateau modulus of a confined polymer melt may be different to a

corresponding unconfined system even if there is no drop in topological interactions

for the confined case.

a) p.ilg@reading.ac.uk
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I. INTRODUCTION

The dynamics of confined polymers is an interesting subject that is particularly important

for the behavior of nanocomposite materials1,2, the phenomenon of surface slip in polymer

melts3,4, and additive manufacturing5. However the dynamics are difficult to characterise

and predict. A key concept is the behavior of entanglements between different polymer

molecules in the vicinity of a confining surface. There has been much interest in the changes

in properties and density of entanglements for such systems6–12. Ever since the seminal work

by Fetters et al.13, the success of the Lin-Noolandi conjecture14–16 has been cited in predic-

tions of a large increase in the entanglement molecular weight for polymer melts under steric

confinement17. Generally the justification for this prediction is the expectation that confined

chains will be less inter-penetrating than their bulk counterparts. There is an experimental

study which concluded that the prediction of a strong drop in entanglements near to the

surface is correct even under weak confinement18.

An example of a relevant system is a polymer melt that is confined in a channel. Despite

much investigation, there is no clear consensus regarding the magnitude and characteristic

length of any depletion in the density profile of entanglements at a flat surface. For example,

looking towards experiment, Bodiguel and Fretigny10 suggested that the density of entan-

glements at the surface might only deviate from the bulk value within approximately a tube

diameter (entanglement spacing) from the surface, using polystyrene films. Weir et al.11

studied nano-composite systems comprising polymer melts filled with very high aspect ratio

graphene oxide nano-particles. The authors suggest that the entanglement density could be

reduced within roughly a chain radius of gyration from a surface.

Several studies using computer simulation have examined the system average ‘entanglement

length’, Ne, of confined melts, found from Primitive Path Analysis (PPA)19. In some cases

an ‘S-coil’20 definition of entanglement length was employed7,12 that makes an assumption of

Gaussian chain statistics. This assumption is usually considered appropriate in the bulk melt

but appears questionable for confined systems. Alternative measures for the entanglement

length that count the number of kinks in primitive paths which are generated using Kröger’s

Z1 algorithm21 have also been investigated under confinement22–24. One such measure, the

‘modified S-kink’ estimator, is:

N topo
e (n) =

n+ 1

〈Z〉
(1)
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where n is the number of bonds in a chain and 〈Z〉 is the mean number of kinks in a primitive

path which separate straight line segments, such that:

lim
n→∞

N topo
e (n) = N topo

e (2)

Eqn 1 is sometimes referred to as a ‘topological length’25. For a range of flexible polymer

melts, eqn 1 underestimates the most widely used rheological definition of the entanglement

length, N rheo
e , by a factor of21 N rheo

e /N topo
e ≈ 2. A comparison with the S-coil measure, which

agrees closely with the rheological definition, indicates that the primitive path, defined in

this way, is not fully flexible. Everaers25 has argued that the ratio, N rheo
e /N topo

e , may be used

to measure the functionality of the entanglement network using an analogy with phantom

network theory. The observed ratio implies that entanglements are predominately binary

events, roughly in agreement with a detailed investigation using Molecular Dynamics which

nevertheless showed that a smaller but significant number of entanglements involve three

chains26. There is also evidence for the dominance of binary entanglements in simulations of

star27 and ring28 chain architectures. Here a relevant question is whether the binary picture

is also valid for confined melts.

Although Molecular Dynamics can also allow the visualization of contacts between different

chains that sometimes coincide with an intuitive picture of transient knots (‘entanglements’)26,

it is not straightforward to understand how such topological interactions precisely influence

chain dynamics and material properties27. It has already been pointed out that the relation

between the plateau modulus and entanglement length may change under confinement22,

and we will further consider this question in section 3. Even if topological interactions are

binary, the motion of a given chain will depend more generally on the collective motion of

chains in the surrounding environment that the given chain may not be directly in contact

with14. It then becomes unclear exactly how an entanglement can be most meaningfully

defined, particularly when comparing chains in different environments. In our case, we

would like to compare entanglements in chains at different positions relative to a surface.

We would also like to stress that it is not a priori known how any entanglement mea-

sure found from microscopic simulation should correspond to the number of topological

constraints (or fields) used in a theoretical coarse-grained model (e.g. tube or slip-spring

models). For bulk melts, the relationships between PPA generated entanglement measures

and the parameters controlling entanglements in theoretical models have been tested and are
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quite well understood19,21,25,29,30. In inhomogeneous systems comprising linear homopoly-

mers the correspondence is not known since up till now no direct quantitative comparison

between microscopic and coarse-grained models of such a system has been made for dynamic

observables. For a mapping between microscopic and coarse-grained models of a diblock

copolymer system see Ramı́rez-Hernández et al. 31 . Furthermore it is not obvious how the

concepts of topological constraints (‘entanglements’) that are well defined in e.g. bulk slip-

spring models (slip-springs) or tube models (tube persistence length) may be extended to

an inhomogeneous confined system.

Simply put, we must ask the following general question:

Is an entanglement near a surface similar to an entanglement in the bulk?

We focus on the relatively simple case of a polymer melt of linear and flexible chains

that is weakly confined in a channel bounded by two parallel surfaces. The channel width

is large compared to the size of a chain. To consider the above question for this case our

approach is to generalize a theoretical bulk model with well defined topological fields to

a confined system. Topological interactions are not an emergent phenomena within this

empirical single-chain model, but are explicitly introduced via slip-springs. It is therefore

more straightforward to investigate how the topological interactions affect chain dynamics

near the surface within this model compared to detailed Molecular Dynamics where the

definition of an entanglement is unclear. The single-chain slip-spring model is also vastly

less computationally expensive than a corresponding MD simulation.

We compare the predictions of the single-chain slip-spring model with well defined topo-

logical constraints to a much more detailed many-chain molecular model. Quantitative

comparison with the detailed MD model tests whether such the generalized slip-spring

model can accurately predict dynamical observables, and if so, for which choice of density

profile of topologically confining fields (slip-springs) across the inhomogeneous confined

system.

Since confinement influences chain statistics and dynamics irrespective of whether topo-

logical interactions also exist, it is important that the slip-spring model also incorporates

these effects. A detailed comparison of a simplified version of the model without slip-springs,

to MD, has already been made32. This non-entangled ‘modified-Rouse’ model agrees reason-
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ably well with the behavior of sufficiently short Kremer-Grest (KG MD) model chains near

the surface. Large deviations from the modified-Rouse model predictions, which emerge

using longer KG MD model33 chains, are expected to be due to emergent topological in-

teractions. This means that when we decorate the non-entangled modified-Rouse model

with slip-springs, the degree of agreement of the resulting dynamics of the model with the

entangled KG MD chains should give an indication of how well the slip-springs model the

emergent effects of topological interactions at the surface.

It is necessary to prescribe a density profile of slip-links and slip-spring anchors in the

channel. Simulation has also been employed to investigate entanglement depletion. Since

primitive path kinks have a well defined spatial position, a kink density may be calcu-

lated as a description for an ‘entanglement point’ density profile. This has been carried

out by Sussman24 for the case of free standing films using two different channel widths:

Lc ≈
√〈

Re
2
〉

bulk
and Lc ≈

√〈
Re

2
〉

bulk
/3, for very long chains (n = 2000 bonds), where〈

Re
2
〉

bulk
is the mean square end-to-end distance of chains in the bulk. In both cases, a very

narrow depletion layer of kinks of width ≈ 4σ was observed, where σ is the Lennard-Jones

length that is characteristic of a monomer size. A small maximum in the kink density

profile at the border of the depletion layer was also observed. This observation is not well

understood. Note that although the MD model of Sussman used a similar bead density

to us, very stiff harmonic bonded potentials were used instead of the (Finitely Extensible

Nonlinear Elastic) FENE springs of the standard KG MD model. We think that this should

have only a small influence on chain statistics however.

It has been noted25 that for bulk systems the number of slip-springs per chain used in

the slip-spring model to fit dynamical data of Molecular Dynamics simulations of KG MD

model chains29,30 is very similar to the number of kinks per chain found using PPA. It is

then tempting to heuristically associate a kink in a primitive path with a slip-spring in the

slip-spring model. By associating kinks with slip-springs, as an initial working assumption,

the relevant quantity that we would like to extract from MD is the kink density profile at

the surface.

This paper is organized as follows: in section II we perform a PPA using the Z1 algo-

rithm, adapted for channel confinement, on a KG MD model of a melt confined in a channel

by two parallel flat reflective surfaces. We generate a kink density profile as a function of
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distance to a surface analogous to the free film case carried out by Sussman. The kink

density profile motivates the study of a simple single-chain slip-spring model under paral-

lel plate confinement that assumes a uniform density of slip-links and anchors across the

channel. Section III presents the slip-spring model. Finally, in section IV we compare the

slip-spring model with the KG MD model using dynamical correlation functions of chains

at equilibrium. Conclusions are made in section V.

II. MOLECULAR DYNAMICS MODEL

We use the same confined KG MD model and parameters for flexible chains as in a

previous paper32, which is very similar to other models in the literature34,35. There are

two parallel reflective surfaces bounding the fluid in one dimension so that the channel

is symmetric, and periodic boundaries in the other two dimensions. The choice of flat

reflecting surfaces is made for simplicity. Using simulations of melts comprising short chains

we have verified that, for all auto-chain correlation function observables considered in this

paper, this choice leads to no difference with respect to a surface formed by a rough lattice

wall36. It was however found36 that the choice of surface structure is very important for

global observables such as the channel average stress correlation function35,36 and cross-

chain orientation correlation functions36,37.

We investigate a monodisperse melt comprising Nch = 357 chains, each with n = 256 bonds.

A Langevin thermostat with friction constant ξMD = 0.5mb/τLJ was used, where mb is the

bead mass and τLJ =
√
σ2mb/ε is the shortest natural time unit of the simulation (‘Lennard-

Jones time’); ε and σ are the Lennard-Jones interaction energy and length respectively. The

temperature was set to T = ε. The periodic box dimensions parallel to the surface were set

as Lz, Lx ≈ 2
√〈

Re
2
〉

bulk
. We choose a channel width normal to the confining surfaces of

Lc ≈ 3.4
√〈

Re
2
〉

bulk
. This choice ensures that there is a center channel region with width

0.5
√〈

Re
2
〉

bulk
that only comprises chains whose mean square end-to-end vectors match

those of bulk chains32. For the chain length investigated, n = 256,
√〈

Re
2
〉

bulk
≈ 21σ. The

monomer density in the channel center matches the standard bulk density of ρ = 0.85σ−3

for a Kremer-Grest melt.
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1. Equilibration procedure

In addition to the confined channel system preparation for shorter chains described

previously32, additional equilibration steps for the entangled system with n = 256 are nec-

essary. We here follow the procedure of Cao and Likhtman38 by first preparing the system

using soft non-bonded and harmonic bonded potentials which allow bond-crossing events.

This set of soft interaction potentials has been termed ‘soft MD’39. We have previously

demonstrated that in the presence of a flat reflective surface the soft MD model has very

similar static properties to KG MD32. Simulations using the soft MD model ran for several

Rouse times. Following this the potentials were switched to the KG MD model using a

‘push-off’ over the first Lennard-Jones time, τLJ. The system then ran for several longest

KG MD system relaxation times, τF, (defined from the longest Maxwell mode of a spectrum

fitted to the surface parallel end-to-end vector correlation function (where in τF ‘F’ denotes

that all chains have two free ends in this system)) before any data presented here was col-

lected. For n = 256 we find that τF ≈ 2.5 × 105τLJ. Several independent runs were carried

out and the results were obtained by an ensemble average. Checking that the data recorded

in consecutive runs was consistent acted as an additional check that the system was properly

equilibrated. For every observable, error bars are calculated based on the assumption that

recorded data generated from conformations which are separated by 2.4τF are uncorrelated.

The error bars represent confidence intervals of one standard deviation.

2. A Primitive Path Analysis of a confined polymer melt

We use the Z1 algorithm of Kröger21 in order to determine the spatial locations of kinks

in the primitive paths of polymer chains. Figure 1 plots the kink density as a function of

distance from the nearest wall, normalized by the mean kink density in the channel center.

There is a depletion layer of kinks until approximately y = 2σ from the surface, immediately

followed by a moderate excess of kinks before the bulk behavior is reached at approximately

y = 6σ from the surface.

When we map to the slip-spring model in section III the mean slip-spring (‘virtual’) bond

length is bv ≈ 2.9σ when mapped to the KG MD model length scale. Unlike kinks, slip-

springs act as confining fields rather that network points. A model using a small number
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FIG. 1: Kink density profiles as a function of distance from the kink to the nearest surface,

normalized by the center channel density. Kinks are obtained via the Z1 algorithm21

applied to the KG MD melt using chains comprising n = 256 bonds.

of stiff slip-springs can produce similar results to a model using a larger number of softer

slip-springs. However the best fit to bulk MD data is found using our chosen parameters29,30.

As a result it may not be very meaningful to try to fit slip-link or anchor density profiles

precisely to the kink density profile on length-scales smaller than approximately bv.

Taking into account the region with increased kink density, the mean density in the surface

region (of width ≈ 6σ ≈ 2bv) is only a little less than in the channel center (approximately

10% less). Primitive paths may also be found by ‘non-destructive’ methods such as the

Isoconfigurational Ensemble (ICE) method6. ICE defines a primitive path, that is con-

sistent with the classical picture of tube models, by averaging chain conformations over a

time interval of order the equilibration time, τe: the time at which topological contraints

become important for dynamic correlations so that a ‘phantom chain’ description such as

the modified-Rouse model becomes insufficient. Several simulations with identical initial

spatial configurations but different initial bead velocities are averaged over. Alternative

definitions of ‘entanglement points’ have been proposed using ICE40, and a comparison

between the primitive paths that are generated using either a Z1 type algorithm or ICE

has been made, demonstrating good qualitative agreement between the two methods6. The

particular form of a density profile for ‘entanglement points’ is expected to depend to some
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degree on their particular definition. This is another reason for why we consider that the

mean kink density in the surface region is the most important quantity to extract with

regard to initially informing an appropriate slip-link density profile. Further analysis using

a range of chain-lengths is necessary in order to establish a good understanding for the

scaling of the size of any ‘entanglement point’ surface depletion, preferably using more than

one definition of ‘entanglement point’. It has been postulated41, that the drop in kinks at

the surface could be due to the weak nematic interaction for segments close to the surface32,

but this possibility has not been tested. We also note that Figure 1 is qualitatively similar

to the density profile of the chain center of mass near the surface (see Figure 4 of the

supplementary material). Figure 1 shows that the drop in kinks in the surface region of

size ≈ 2bv is small for the chain length studied. However we must note that although we

do not have a surface density profile of ‘entanglement points’ that is generated using a

‘non-destructive’ method, the ICE methodology applied to ring polymers concluded that

the tube diameter is larger than in the bulk within two or three bulk tube diameters from

the surface of a free-standing film by a maximum factor of 15− 20%. Finally we note that

the Z1 algorithm ignores self entanglements. A previous PPA investigation concluded that

the number of self-entanglements is negligible in the bulk42. In the future it would be useful

to also examine the importance of self-entanglements at the surface.

In the following section we present an extension of the original single-chain slip-spring

model, developed by Likhtman43, to include confinement effects. We investigate the effect

that surface proximity has on chain dynamics under the assumption that there is a uniform

density of slip-links and anchors at all points in the channel. Since the average kink density

near the surface is only ≈ 10% less than in the channel center, this assumption appears to

be a reasonable initial guess.

III. A SLIP-SPRING MODEL WITH PARALLEL PLATE CONFINEMENT

The single-chain slip-spring model presented here aims to describe entangled chains in

a polymer melt at flat and completely non-adsorbing surfaces. It is an adaptation of the

original model by Likhtman43 with no additional parameters, and a natural extension of a

non-entangled modified-Rouse model for surface chain dynamics in weak confinement32.
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FIG. 2: Schematic illustration of a single chain comprising N = 11 real springs

(represented by green wavy curves) and Z = 4 virtual springs (blue wavy curves), within

the confined slip-spring model. The positions, R0 and RN , of the first and last beads, are

indicated. The final bond vector QN = RN −RN−1 is also indicated. The virtual springs

(slip-springs) are connected to real chain beads via slip-links at positions, sj. The

slip-springs are fixed to anchoring points at positions aj, as represented via crosses. The

positions of the anchor and slip-link of the second slip-spring are indicated in the

illustration. Positions relative to the nearest wall (located at yw) are indicated by tildes.

For example ỹN−4 indicates the position of the N − 4th bead relative to the nearest wall,

ỹN−4 = yN−4 − yw.

In the same spirit as the original work43 where slip-links are added to the standard Rouse

model to capture entanglement effects, we here add slip-links to the modified-Rouse model32

to include entanglement and confinement effects. The slip-links are connected to anchors via

a ‘spring’ potential that is modified with respect to the Hookean spring used in the original

slip-spring model. A schematic illustration of a single chain within the model, indicating all

degrees of freedom, is given by figure 2. The total chain potential in the presence of a single

wall at position ywê⊥, including the sets of interactions due to N real ‘springs’ connecting

the modified-Rouse beads and Z virtual ‘springs’ acting between slip-links at positions sj
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and anchors at positions aj, is given by

USS = UN({RN+1}, yw) + UZ({sZ}, {aZ}, yw)

=
N∑
i=1

(
k

2
Qi

2 + A(yi, yi−1, yw)

)

+
Z∑
j=1

(
k

2Ns

(sj − aj)
2 + A(sj,y, aj,y, yw)

) (3)

where Ri and Qi = Ri − Ri−1 are the real chain bead and bond vectors respectively,

k = T/σ1
2, σ1

2 = b2/3, and b2 is equal to the mean square bond length far from the surface.

Temperature, T , is written in units of the Boltzmann constant, kb. Surface normal positions

are defined as aj,y = aj · ê⊥ and yi = Ri · ê⊥. Ns is the ‘number of monomers per virtual

spring’43 which controls the mean square virtual spring length far from the surface, bv
2, via

the relation: bv
2 = Nsb

2. The first part of eqn 3 is the standard modified-Rouse potential

previously investigated32. The modified-Rouse potential leads to reflected-Gaussian bond

statistics and a uniform bead density at all points in the channel, such that the fluid is

considered incompressible. To this is added the virtual-spring potential, UZ({sZ}, {aZ}, yw),

which differs from the original slip-spring potential via the additional surface dependent term

A(sj,y, aj,y, yw) = −T log

(
1 + exp

(
−2s̃j,yãj,y
Nsσ1

2

))
(4)

where tildes indicate relative wall positions, e.g. s̃j,y = sj,y − yw.

In the surface parallel direction the probability distribution of the complete set of real and

virtual spring orientations is identical to the original slip-spring model. In the wall normal

direction the probability distribution becomes

Ψ({yN+1}, {sZy }, {aZy }) ∝

exp

(
−

N∑
i=1

(
(yi − yi−1)2

2σ1
2

+
(−ỹi − ỹi−1)2

2σ1
2

))
×

exp

(
−

Z∑
j=1

(
(sj,y − aj,y)2

2Nsσ1
2

+
(−s̃j,y − ãj,y)2

2Nsσ1
2

)) (5)

The probability weight corresponding to the set of slip-spring orientations is proportional to

the second exponential in eqn 5, which is in the form of a probability weight of a reflected

random walk from anchor position aj,y to slip-link position sj,y. Analogous to Likhtman’s

original slip-spring model43, integrating over all possible anchor positions in the channel

11
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FIG. 3: Surface normal mean square end-to-end distances of segments, using segments

consisting of m = 2, 4, 8, and 16 bonds, as a function of segment start bead position with

respect to a surface, y. Black open pentagons: modified-Rouse model (no slip-springs); red

squares: slip-spring model using NSS
e = 4 and Ns = 0.5; green line: analytic solution44 for

m = 16. Both models, with and without slip-springs, use chains with N = 32 bonds.

leads to a probability distribution for the complete set of real chain beads that is unchanged

with respect to the model without slip-links, since the partition function of a reflected ran-

dom walk inside a channel is conserved irrespective of the walk start position. Figure 3

verifies that the surface normal mean square end-to-end distances of segments comprising

m bonds, 〈um,⊥2〉, match the model without slip-springs, at all points in the channel.

The virtual-spring potential, UZ({sZ}, {aZ}, yw), is a simple and natural choice that con-

serves the static behavior of the modified-Rouse model. If the additional term, eqn 4, is

neglected, the asymmetry of slip-spring orientations near the surface changes the distribution

of real chain orientations. For an alternative approach that counteracts such an asymmetry,

as applied to a multi-chain slip-spring model, see Masnada et al.45.

1. Model implementation

In order to create the initial configuration of the modified slip-spring model, the first

bead of each chain is placed with wall normal position inside the channel according to a

uniform distribution. Then the chains are grown by generating bond vectors according to a

12



Gaussian distribution with zero mean and variance b2. If a generated bead is placed outside

of the channel then its position is reflected in the surface plane that it has crossed. This

procedure results in a set of chain orientations sampling the distribution Ψ, eqn 5.

Following the generation of the set of bead positions, a bead is selected from all beads in

the channel with equal probability. If the selected bead is currently unoccupied then a slip-

link is placed on it. The corresponding slip-spring anchor position is selected by making a

displacement relative to the position of the slip-link according to a Gaussian distribution

with zero mean and variance Nsb
2. If the anchor is outside of the channel then this position

is reflected in the surface plane that it crossed. This leaves a set of anchor and slip-link

positions sampling the distribution Ψ, eqn 5. This system preparation is completed when

there are round(NchN/N
SS
e ) slip-springs in total in the channel, where Nch is the number

of chains in the slip-spring simulation, and NSS
e is the mean number of bonds separating

slip-springs. By construction the density of slip-links and anchors is uniform across the

channel since the bead density is also uniform.

Slip-links may only exist at the position of chain beads. Slip-link dynamics are given by

discrete moves according to a Metropolis-Hastings algorithm39 satisfying detailed balance.

Slip-link jump attempts are made only to adjacent beads with equal probability: ∆i =

±1, although in principle it would be possible to choose |∆i| ≥ 1, where ∆i is an integer

specifying the change in bead index following a slip-link jump. The acceptance probability

of the jump attempt is given by

Paccept =

1, ∆USS ≤ 0

exp(−∆USS/T ), ∆USS > 0
(6)

where ∆USS is the change in the chain potential, eqn 3, due to the Monte-Carlo move.

A slip-spring does not contribute to the system potential once it has left a chain end

bead. This means that a slip-spring occupying an end-bead has a 50% chance of being

deleted every jump attempt. When a slip-link is deleted from a chain end, a new end-bead

is selected from amongst all the chain end-beads in the channel with equal probability irre-

spective of the bead’s position in the channel. If the selected end-bead is unoccupied a new

slip-link is created on it. If the selected end-bead is occupied then the process is repeated

by selecting another end-bead. The total number of slip-springs in the channel is then fixed

for all time at round(NchN/N
SS
e ).

13



2. Parameters of the slip-spring model

We use a slip-spring model comprising N = 26 bonds to fit observables of the KG MD

system comprising chains of n = 256 bonds so that the mapping ratio is n/N ≈ 9.85.

We use the parameter values Ns = 0.5 and NSS
e = 4 following earlier work30. A finer

mapping may be used to get a better fit of observables at early time29. However this would

be computationally expensive and unnecessary since we are interested in the dynamics at

t > τe. It is found that fine graining the slip-spring model by increasing proportionally

N , Ns, and NSS
e , makes very little difference to the dynamics at t ' τe for all observables

investigated. For an investigation of the segmental dynamics at t < τe, and details of the

model dynamics for the real chain beads, see Kirk and Ilg 32 .

The channel width is chosen to be identical in units of
√〈

Re
2
〉

bulk
to the KG MD system

(Lc ≈ 3.4
√〈

Re
2
〉

bulk
). The time-step used is ∆t = 0.01τ0 where

τ0 = ξb2/T (7)

refers to the time unit used by Zhu et al.46. For bulk chains it is already known30 that

the slip-spring model time unit mapped from the KG MD model is τ0 = 3370τLJ using the

chosen parameters, which is very similar30 to τe. Following Zhu47 the frequency of slip-link

jump attempts used is fSS = 100τ−1
0 - i.e. a jump attempt every computational time-step

interval.

3. Constraint release

Slip-links model the effect of constraints on the selected chain resulting from all the other

chains in the melt. Since the other chains relax on the same time scale as the selected chain,

the resulting constraints get destroyed and reorganized also on this time scale. This effect

is called constraint release and can be implemented into the model by pairing up slip-links.

If slip-links are paired then when one slip-link is deleted from a chain end a corresponding

paired slip-link is also deleted and a move is attempted to regenerate the paired slip-link

on any bead of any chain in the channel with equal probability. In a single-chain model

14
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FIG. 4: Bead density profile near a flat reflective surface using the KG MD model with

n = 256 bonds per chain.

it only matters that the distribution of constraint release events is accurate. We observe

that the distribution of slip-spring lifetimes is approximately independent of the channel

position of the slip-spring when constraint release is switched off. In view of the simplicity

of the resulting model, we follow the original approach of randomly pairing slip-links without

consideration of the existence of confining surfaces. In the supplementary material the small

differences in the slip-spring lifetime distributions as a function of the slip-spring position

in the channel are investigated in detail using constraint release switched off.

4. Density profile

Figure 4 plots the bead density profile near a reflective surface using the KG MD model.

The density oscillates near the surface but the mean density is very similar to the bulk

value of 0.85σ−3. Similar behavior has been observed using more realistic simulations of

a polymer melt in contact with structured flat surfaces. For example, Daoulas et al.48

studied a united atom model of monodisperse polyethylene (PE) melts in contact with a

graphite surface, spanning a decade of molecular weights up to chains consisting of 400

carbon atoms (the crossover to entanglement dominated dynamics occurs at around 156

Methyl groups (C156)49). Lee et al.50 studied an all atom simulation of a polystyrene melt
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in contact with a graphite surface. In both cases no notable depletion in mass density

was observed at the surfaces. In experiment, larger depletion layers, that are the size of a

styrene monomer51, or greater52, have been found using polystyrene melts in contact with

different surfaces. Theoretical models have been proposed to describe the density profile

and conformations in the interfacial region where the polymer density is small but non-

zero. For simplicity we assume a constant bead density for the modified slip-spring model

proposed here. Discounting the oscillations in mass density in figure 4, this assumption is

consistent with our particular MD model. Predictions of a drop in entanglements at the

surface have been made without considering monomer depletion effects17, so that the simpler

situation that we consider has at the very least considerable theoretical significance. When

the interfacial width is found to be notable, this effect could be modeled53, as for example

it has been in the detailed multi-chain slip-spring model of Ramı́rez-Hernández et al.54.

IV. CHAIN DYNAMICS: COMPARISON TO THE KG MD MODEL

Chains are categorized into channel regions of wall normal width Lc/12 ≈ 0.28
√〈

Re
2
〉

bulk

at t′ = 0, depending on the distance, ycm, from the chain center of mass to the nearest wall

at that time. For example, chains in the j = 0 region closest to the surface satisfy ycm <

0.28
√〈

Re
2
〉

bulk
at t′ = 0, whereas chains in the j = 1 region satisfy 0.28

√〈
Re

2
〉

bulk
< ycm <

0.56
√〈

Re
2
〉

bulk
. For ideal bulk chains the mean square radius of gyration satisfies55

〈
Rg

2
〉

=〈
Re

2
〉
/6. This means that the chains located in the two regions closest to the surface may

be expected to be less entangled than bulk chains according to previous work11,17, since such

chains are located within approximately one radius of gyration from the surface. Since the

channel is symmetric we improve statistics by averaging opposing regions.

We investigate time correlation functions of form

Fj(t) =

〈∑Nch

i=1 Θ(yicm(0)− Yj)Θ(Yj+1 − yicm(0))
∫ tmax−t

0
f i(t′ + t)f i(t′)dt′∑Nch

i=1 Θ(yicm(0)− Yj)Θ(Yj+1 − yicm(0))(tmax − t)

〉
= 〈f(t)f(0)〉j,tmax−t

(8)

where f i(t′) is a function of the complete set of monomer positions of the ith chain, {Rn+1}i,

at time t′. The Heaviside step function is denoted by Θ(y); Yj indicates the surface normal

position at which the jth region begins: for instance Y0 denotes the position of the surface.

The surface normal center of mass position of the ith chain at t′ = 0 is yicm(0).
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In words, eqn 8 is a time average of the time-correlation f(t)f(0), taken with duration

tmax− t, averaged over all chains whose center of mass lie in the jth region at the beginning

of the time average: t′ = 0. For brevity, in the following we use the shorthand notation

〈f(t)f(0)〉j,tmax−t to represent such a time average, as indicated by the second equality in

eqn 8.

The correlation functions were calculated for a total time duration of tmax = 2.4τF for both

slip-spring and KG MD models. Over this time period, for both models the center of mass

positions of chains in the first two surface regions move a distance normal to the surface of

approximately the region width on average. The mean density of chains is similar in every

region. We compare the slip-spring model using the parameters: N = 26, Ns = 0.5 and

NSS
e = 4, with the KG MD model using n = 256. All the parameters of the slip-spring

model have been determined and we keep them fixed throughout, so there is no freedom for

any adjustments in all of the following comparison between the slip-spring and MD models.

1. Chain end-to-end vector correlation function

Before investigating the dynamical end-to-end vector correlation function we first com-

pare the mean squares of components of the end-to-end vectors of chains in each channel

region. The system is invariant with respect to a swap of the surface parallel dimensions

x̂ and ẑ. Therefore we average over both dimensions for relevant observables, indicated by

the parallel indices, ‖. Figure 5 plots the mean square end-to-end distance of chains with

center of mass position in the jth channel region for both the surface normal and parallel

directions (α =‖,⊥),
〈
Re,α

2
〉
j
, normalized by the center channel value,

〈
Re,α

2
〉

5
. The two

models agree quite well with regard to this purely static quantity. The mean square of

the surface normal component of the end-to-end vector is much smaller in the j = 0 and

j = 1 regions compared to in the channel center. For the slip-spring model the surface

parallel end-to-end distance profile is uniform, whereas for the KG MD model there is a

weak swelling in the j = 0 region which has been discussed previously32.

Figure 6 compares normalized time correlation functions of the chain end-to-end vector in

the surface parallel direction, Φj,‖(t), for chains located in the j = 0 and j = 5 (center

channel) regions. The normalization is made with respect to the value of the end-to-end

correlation function at t = 0:
〈
Re,‖

2
〉
j,tmax

. Note that
〈
Re,α

2
〉
j,tmax

are dynamical observables
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FIG. 5: Mean square end-to-end distances of chains in the α =‖,⊥ directions normalized
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. Channel regions are selected depending on

the chain center of mass position. Error bars correspond to the KG MD model; error bars

are not plotted for the slip-spring model since they are smaller than the size of the symbols.
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FIG. 6: Normalized end-to-end vector correlation functions in the surface parallel

direction, Φj,‖(t). The time unit, τ0, is given by eqn 7, and τ0 ≈ τe. Error bars correspond

to the KG MD model.
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that depend on tmax. This case corresponds to f(t) = Re,‖(t)/
√〈

Re,‖
2
〉
j,tmax

in eqn 8. There

is no discernible channel dependence for this observable using the slip-spring model which

agrees very well with the KG MD model.

Figure 7a plots the end-to-end vector correlation function in the surface normal direction

normalized by the center channel value of the end-to-end vector correlation function at t = 0:〈
Re,⊥

2
〉

5,tmax
. This case corresponds to f(t) = Re,⊥(t)/

√〈
Re,⊥

2
〉

5,tmax
in eqn 8. There is

qualitative agreement between the models. Also good quantitative agreement is found up

until region j = 1. But in the j = 0 region nearest to the surface the slip-spring model

does not accurately predict the value of
〈
Re,⊥

2
〉

0,tmax
/
〈
Re,⊥

2
〉

5,tmax
that is found using the

KG MD model. The disagreement, approximately 20%, is worse than for the purely static

quantity,
〈
Re,⊥

2
〉

0
/
〈
Re,⊥

2
〉

5
(see figure 5), for which the disagreement is approximately

10%.

Figure 7b plots Φj,⊥(t): the end-to-end vector correlation function in the surface normal

direction normalized by
〈
Re,⊥

2
〉
j,tmax

. Figure 7b reveals a progressively faster relaxation

as the surface is approached. The slip-spring model describes this accelerated relaxation

rather accurately except for the region closest to the wall (j = 0). In this region there is a

notably faster relaxation using the slip-spring model with respect to the KG MD model for

this observable.

2. Mid-monomer mean square displacement

The mid-monomer mean square displacement in the surface parallel direction is strongly

dependent on the choice of surface structure and thermostat friction constant32. However

this is not the case for the same observable in the surface normal direction, g1,mid,⊥(t), so that

a more meaningful comparison with the slip-spring model can be made for this case. Figure 8

plots g1,mid,⊥(t) in a normalized form which reveals its sub
√
t scaling for τ0 / t / τR, where

τR is an estimated Rouse time for this chain length (see the caption of figure 8). For chains

that are not influenced by the surface, this deviation from the
√
t scaling that is predicted

by the Rouse model is associated with topological effects. For t ' τ0 and j ≥ 1, the slip-

spring model matches the KG MD model quite well, and as the surface is approached the

mid-monomer diffusion becomes progressively slower using both models. However, using the
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FIG. 7: Correlation functions of the surface normal component of the end-to-end vector

normalized by (a)
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. Open and filled symbols correspond to

the slip-spring and KG MD models respectively. The time unit, τ0, is given by eqn 7, and

τ0 ≈ τe. Error bars correspond to the KG MD model.
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FIG. 8: Mid-monomer mean square displacement in the surface normal direction,

normalized to reveal the sub
√
t time-dependence for t > τ0. The time unit, τ0, is given by

eqn 7, and τ0 ≈ τe. Open and filled symbols correspond to the slip-spring and KG MD

models respectively. An estimated Rouse time, τR, for this chain length is found by scaling

from the Rouse time for chains consisting of n = 64 bonds32 (τR = 23.5τ0 for n = 256).

The black dotted line is 2/π3/2 (continuous limit Rouse model prediction of this observable

for τN < t < τR, where τN is the relaxation time of the fastest Rouse mode39). The red

dashed line is proportional to the reptation model56 prediction at τe < t < τR

KG MD model, the mid-monomer diffusion in the j = 0 region is only very slightly slower

than in the j = 1 region. For the slip-spring model the drop in diffusion rate from the j = 1

region to the j = 0 region is considerably larger. Since the KG MD mid-monomers are more

mobile than the slip-spring prediction in the immediate proximity of the surface (j = 0), this

may appear to suggest a decreased degree of entanglement. However the opposite conclusion

could be made if we only looked at the surface normal end-to-end vector relaxation, figure 7.

Note also that for g1,mid,⊥(t) a similar behavior was observed using non-entangled chains32:

very close to the surface KG MD chains consisting of n = 64 bonds have a faster mid-

monomer diffusion than the (non-entangled) modified-Rouse prediction. Therefore it is not

obvious that the speed-up in surface normal diffusion of the MD model with respect to the

slip-spring model can be attributed solely to an effect of entanglements.
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Further work is needed to investigate the origin of the wall-mediated effects leading to the

discrepancies in the perpendicular relaxation and mid-monomer mean square displacement

very close to the surface.

3. Chain bond orientation correlation function

A shear component of the chain bond orientation tensor involving the direction normal

to the surface is

O‖⊥(t) =
n−1∑
i=0

(
ri+1,‖(t)− ri,‖(t)

)
(ri+1,⊥(t)− ri,⊥(t)) (9)

where n is the number of bonds in a chain. Eqn 9 matches the definition used by Cao and

Likhtman37. Figure 9a plots the chain bond orientation auto-correlation functions, Āj(t),

which use f(t) = O‖⊥(t)/n. This observable is found to be sensitive to the presence of

confining walls up to distances of approximately one radius of gyration (j = 0, 1), while

regions further away (j ≥ 2) behave very similarly to the center channel (j = 5). We

observe that the proximity to a confining surface accelerates the relaxation of the bond

auto-correlation function for sufficiently long times (t & 100τLJ). This trend is qualitatively

captured by the slip-spring model, although the relaxation in this intermediate time scale

is generally overemphasized by the slip-spring model. Nevertheless, for t� τe the KG MD

curves are simultaneously well described by the slip-spring model both near the surface and

in the center channel. However, the agreement between the two models is less good for j = 0

at t ≈ τe compared to the other two regions. Note that it is not possible to simultaneously

fit both the chain mean square end-to-end distance and bond orientation moment, Āj(0),

of a slip-spring model to the KG MD model, even in the bulk. This is due to the effect

of chain-swelling, which the ideal chain slip-spring model does not describe32. Figure 9b

compares the ratios Ā0(t)/Ā5(t) and Ā1(t)/Ā5(t), using the slip-spring plots in figure 9a in

addition to plots corresponding to longer chains (N = 104) with Ns = 0.5 and NSS
e = 4 held

fixed. For chains nearer the surface, Āj(0) is smaller. In addition, as discussed above, the

decay of correlations is faster near the surface at t < τe, such that the ratios in figure 9b are

non-negligibly less than unity for both j = 0 and j = 1 regions at t > τe. The ratio appears

to approach 1:1 using the longer slip-spring model chains. This appears unsurprising since in

units of the mean bond length the longer chains have a center of mass position further from
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FIG. 9: (a) Bond orientation correlation functions, Āj(t). Error bars correspond to the KG

MD model. (b) Ratios of the bond orientation correlation functions using the slip-spring

model, Ne = 4 and Ns = 0.5. Black: Ā0(t)/Ā5(t); blue: Ā1(t)/Ā5(t). Open symbols use

N = 26. Filled symbols use N = 104. The time unit, τ0, is given by eqn 7, and τ0 ≈ τe
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the surface compared to the shorter chains, and will correspondingly have a lower proportion

of bonds that are near the surface.

The plateau modulus is often defined theoretically56 as the value of the linear shear stress

relaxation function at τe: G(τe) (also see57 for a discussion of the relation between this

theoretical definition and experimental definitions of the plateau modulus). The Stress

Optical Rule (SOR) can be used to relate G(t) to the total system bond shear orientation

correlation function, S(t), which includes cross-chain bond correlations37,58. S(t) is defined

(following the notation of Cao and Likhtman37) as

S(t) =
Nb

T

Nch∑
l=1

Nch∑
m=1

1

N2
b

〈
Ol
‖⊥(t)Om

‖⊥(0)
〉

=A(t) + C(t)

(10)

where Nb = Nchn is the total number of bonds in the system, and A(t) and C(t) are the

auto-chain and cross-chain contributions to S(t)

A(t) =
Nb

T

Nch∑
l=1

1

N2
b

〈
Ol
‖⊥(t)Ol

‖⊥(0)
〉

=
Nb

TNreg

Nreg−1∑
j=0

Āj(t)

C(t) =
Nb

T

Nch∑
l=1

Nch∑
m=1,m 6=l

1

N2
b

〈
Ol
‖⊥(t)Om

‖⊥(0)
〉 (11)

where Nreg is the total number of distinct regions comprising the fluid (in our case Nreg = 6).

The SOR states that G(t) ∝ S(t). For bulk systems it has been demonstrated37 that at

around τe the cross-chain and auto-chain contributions have a similar magnitude (and form),

C(τe) ≈ A(τe). This is true for a variety of blends of linear chains37 such that G(τe) becomes

a function of A(τe), and we may write G(τe) = βA(τe) with some generality, where β is

constant for a range of blend composition. However the behavior of cross-chain correlations

in confinement could in principle be different from a corresponding bulk system: see e.g.

Cho et al59. A preliminary investigation36 into cross-chain correlations in non-entangled and

confined linear melts reveals non-trivial behavior that depends upon the surface structure

and whether there are surface adsorbed chains present. For the simplified case of non-

adsorbing roughened walls consisting of Lennard-Jones particles, the relative importance of

cross-correlations was found to be similar to the bulk case. If the SOR is valid for a confined

polymer melt and we observe the same relationship: Aconfined(τe) ≈ Cconfined(τe), as for bulk

melts, the relation G(τe) = βA(τe) may be further generalized to confined systems. Figure 9
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would then suggest that the plateau modulus may be lower for a confined system compared

to a bulk melt. It may then appear plausible that the prediction of figure 9b could explain

part of the drop in the plateau modulus observed by Weir et al.11. Note however that this

analysis doesn’t take into account the influence of surface adsorbed chains that may have

slower segmental relaxation32 at t < τe which could actually increase the plateau modulus. If

N topo
e is unchanged in confinement then the relationship of the plateau modulus with N topo

e

may be different from a corresponding bulk relation.

It has previously been demonstrated32 that the zeroth Rouse mode (center of mass) mo-

tion of KG MD model chains is quite highly dependent upon the value of the thermostat

friction used. This is due to the importance of momentum conservation for Hydrodynamic

Interactions (HI)60. Following further investigation36 we have found that the center of mass

diffusion coefficient in a direction parallel to the surface also depends strongly on surface

structure (whether the surface reflects momentum: flat reflective, or not: roughened lattice

surface), even beyond the Rouse time, using short chains comprising n = 64 bonds. As a

result, it may not be straightforward or necessarily meaningful to compare zeroth mode mo-

tion in slip-spring model simulations to that of the KG MD model, since the HI and surface

structure effects are not described by the single-chain model. In contrast, higher mode auto-

chain correlation functions (i.e. not dependent on cross-chain correlations) are very weakly,

if at all, dependent on the boundary structure or thermostat friction. Therefore it is natural

that we first investigated the behavior of observables that depend only on non-zero Rouse

modes, such as the chain end-to-end vector and bond orientation auto-correlation functions,

and compared the results to KG MD using a flat reflective surface and a Langevin thermo-

stat with the most commonly used friction constant in the literature that allows for a large

time-step.

V. CONCLUSION

We have investigated a KG MD model of a polymer melt weakly confined in a channel

with flat reflective boundaries. No discernible confinement effect was found in the terminal

relaxation time of the end-to-end vector correlation function in the surface parallel direction

for chains with different center of mass positions relative to a surface. Despite this we find

that the auto-chain bond shear orientation correlation functions for chains in different re-
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gions depend on the distance of the chains to the confining wall by a non-negligible amount

at t > τe. We proposed a minimal and parameter-free extension of a well-known slip-spring

model43 to include confinement effects via the modified-Rouse model proposed by two of

us recently32. For simplicity, we assume a uniform density of slip-springs in the channel.

Despite its simplicity, at t� τe, both the bond orientation and the normalized surface par-

allel end-to-end vector correlation functions were simultaneously quite well described by the

single-chain model. However the single-chain model agreed less well with the MD simula-

tion for the surface normal end-to-end vector correlation function and mid-monomer mean

square displacement, Φj,⊥(t) and g1,mid,⊥(t) respectively. Modifications of the proposed con-

fined slip-spring model for an improved comparison of Φ0,⊥(t) and g1,mid,⊥(t) is left for future

work.

Our simulation results do not support the picture of strong disentanglement at flat surfaces

in weak confinement that has sometimes been both theoretically suggested17, and experi-

mentally inferred18 in the past. The reasonably good agreement between the MD model and

slip-spring model suggests that further such comparison using longer chain lengths could be

fruitful, and may be used to provide a more precise measure of any disentanglement (or lack

there of) at the flat surface.

The behavior of the auto-chain bond orientation correlation function, using the slip-spring

model with a uniform density of slip-links in the channel, suggests that the experimentally

observed plateau modulus could be different in confined melts even when there is no drop

in topological interactions.

In the future it would be desirable to compare our results with multi-chain slip-spring models

which could, in principle, also use a uniform density of slip-springs within the channel. In

many multi-chain models61–64 slips-springs are qualitatively different from those in the single-

chain model, since they are explicit binary interactions acting between two different chains.

It is feasible that different dynamical behavior may be observed for such cases. An existing

confined formulation54 of such a multi-chain slip-spring model has a depletion of slip-springs

at the walls, and the mean number of slip-springs per chain monotonically decreases as the

channel width is reduced. A Primitive Chain Network model65 has qualitatively similar

behavior in this respect. For the model used in the current work, if the channel is narrowed

a uniform slip-spring density profile is maintained, and reflective-random walk statistics are

also conserved, providing that the channel width greatly exceeds the characteristic length
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scales of the virtual and real spring potentials: Lc �
√
Nsb and Lc � b respectively.

However, for channel widths much smaller than the bulk chain dimension (Lc �
√
Nb)

this behavior is expected to become considerably less realistic since disentanglement and a

greater degree of chain swelling are eventually expected9,66. Generally if the parameters of

a coarse-grained model are changed (e.g. reducing the channel width), it should be verified

that the model remains consistent with experiment and/or detailed simulation.

SUPPLEMENTARY MATERIAL

See the supplementary material for details and discussion of the slip-spring lifetime dis-

tributions as a function of the slip-spring position in the channel when constraint release is

switched off.
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21S. Shanbhag and M. Kröger, Macromolecules 40, 2897 (2007).

22A. Karatrantos, N. Clarke, R. J. Composto, and K. I. Winey, Soft Matter 9, 3877 (2013).

23A. Karatrantos, N. Clarke, R. J. Composto, and K. I. Winey, Soft Matter 12, 2567 (2016).

24D. M. Sussman, Phys. Rev. E. 94, 012503 (2016).

25R. Everaers, Phys. Rev. E. 86, 022801 (2012).

26A. Likhtman, Soft Matter 10, 1895 (2014).

27J. Cao and Z. Wang, Macromolecules 49, 5677 (2016).

28J. Cao, J. Qin, and S. T. Milner, Macromolecules 47, 2479 (2014).

29S. K. Sukumaran and A. E. Likhtman, Macromolecules 42, 4300 (2009).

30Z. Wang, A. E. Likhtman, and R. G. Larson, Macromolecules 45, 3557 (2012).

31A. Ramı́rez-Hernández, B. L. Peters, L. Schneider, M. Andreev, J. D. Schieber, M. Müller,
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