20 research outputs found

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased fromone in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5-11 December, to 17.5% (25/143 samples) in the week 12-18, to 65.9% (89/135 samples) in the week 19-25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool

    Chronic renal failure of unknown origin is caused by HNF1B mutations in 9% of adult patients: a single centre cohort analysis.

    No full text
    Abstract BACKGROUND: HNF1B gene mutations might be an underdiagnosed cause of nephropathy in adult patients mainly because of their pleomorphic clinical presentations. As most studies are based on paediatric populations, it is difficult to assess the likelihood of finding HNF1B mutations in adult patients and consequently define clinical settings in which genetic analysis is indicated. The aim of this study was the search for mutations in the HNF1B gene in a cohort of unrelated adult patients with nephropathy of unknown aetiology. METHODS: Patients were tested for the HNF1B gene if they had chronic kidney disease of unknown origin and renal structure abnormalities (RSA) or a positive family history of nephropathy. The HNF1B coding sequence and intron-exon boundaries were analyzed by direct sequencing. The search for gene deletions was performed by Multiple Ligation Probe Analysis (MLPA). RESULTS: Heterozygous mutations were identified in 6 out of 67 screened patients (9.0%) and included two whole gene deletions, one nonsense (p.Gln136Stop), two missense (p.Gly76Cys and p.Ala314Thr) mutations and a frameshift microdeletion (c.384_390 delCATGCAG), the latter two (c.384_390 del and p.Ala314Thr) not ever being reported to date. Mean age of the mutated patients at screening was 48.5 years with a M/F ratio of 2/4. The clinical manifestations of affected patients were extremely pleomorphic, including several urological and extra-renal manifestations. CONCLUSIONS: Mutations of HNF1B could explain chronic kidney disease in up to 9% of adult patients with a nephropathy of unknown aetiology and RSA: therefore an HNF1B mutation analysis should be considered in this group of patients

    A TSH-CREB1-microRNA Loop Is Required for Thyroid Cell Growth

    No full text
    MicroRNA (miRNA or miR) are an important class of regulators that participate in such biological functions as development, cell proliferation, differentiation, and apoptosis. the aim of this study was to elucidate the role of miRNA in cell proliferation using a unique cell system, namely thyroid cells that require thyrotropin for their growth. Here, we report the identification of a set of five specific miRNA (miR-1, miR-28-A, miR-290-5p, miR-296-3p, and miR-297a), whose down-regulation by thyrotropin is required for thyroid cell growth. in fact, overexpression of these miRNA negatively affects cell growth. We show that three of these miRNA target cAMP-responsive element binding protein (CREB)1, a thyrotropin-activated transcription factor, and that CREB1 binds the regulatory regions of the down-regulated miRNA. Hence, these data indicate that a synergistic loop involving thyrotropin, CREB1, and miRNA is required for thyroid cell proliferation. (Molecular Endocrinology 25: 1819-1830, 2011)Associazione Italiana Ricerca sul CancroUniv Naples Federico 2, Ist Endocrinol & Oncol Sperimentale, CNR, Dipartimento Biol & Patol Cellulare & Mol,Fac Med, I-80131 Naples, ItalyCEINGE Ctr Ingn Genet Biotecnol Avanzate, Naples Oncogenom Ctr, Naples, ItalyEuropean Sch Mol Med, I-80145 Naples, ItalyUniversidade Federal de São Paulo, Dept Biol Sci, BR-05403 São Paulo, BrazilOhio State Univ, Ctr Comprehens Canc, Dept Mol Virol, Columbus, OH 43210 USAUniversidade Federal de São Paulo, Dept Biol Sci, BR-05403 São Paulo, BrazilWeb of Scienc

    Testing for the cytosine insertion in the VNTR of the MUC1 gene in a cohort of Italian patients with autosomal dominant tubulointerstitial kidney disease

    No full text
    INTRODUCTION: Medullary cystic kidney disease type 1 (MCKD1; OMIM #174000) is a familial progressive tubule-interstitial nephropathy belonging to the recently defined group of autosomal dominant tubulointerstitial kidney diseases (ADTKD). CASE REPORT: A specific type of cytosine insertion in the extracellular variable number tandem repeat (VNTR) domain of the MUC1 gene causing the disease was tested in a group of 21 families with ADTKD. We identified this type of MUC1 mutation in two families, whose affected members are described in detail in this case report. Affected (ADTKD-MUC1) members developed end-stage renal disease (ESRD) with a higher incidence (p = 0.033) and at a younger age (p = 0.013) than probands with ADTKD but without this type of mutation. All patients with MUC1-associated kidney disease shared a rather unspecific tubule-interstitial laboratory pattern without medullary cysts, leading to ESRD between the age of 33 and 47 years. We were not able to identify any single common extra-renal feature among affected patients, even if they had various comorbidities, which are described in detail. CONCLUSIONS: We identified this type of MUC1 mutation in 9.5 % of families from an ADTKD Italian cohort; larger studies are needed to better define the criteria for genetic testing for this type of mutation
    corecore