3 research outputs found

    Trophic niche overlap between native freshwater mussels (Order: Unionida) and the invasive Corbicula fluminea

    Get PDF
    Freshwater mussels (Order Unionida) are highly threatened. Interspecific competition for food sources with invasive alien species is considered to be one of the factors responsible for their decline because successful invaders are expected to have wider trophic niches and more flexible feeding strategies than their native counterparts. In this study, carbon (δ13C: 13C/12C) and nitrogen (δ15N: 15N/14N) stable isotopes were used to investigate the trophic niche overlap between the native freshwater mussel species, Anodonta anatina, Potomida littoralis, and Unio delphinus, and the invasive bivalve Corbicula fluminea living in sympatry in the Tua basin (south-west Europe). The species presenting the widest trophic niches were C. fluminea and A. anatina, which indicate that they have broader diets than U. delphinus and P. littoralis. Nonetheless, all the species assimilated microphytobenthos, sediment organic matter, and detritus derived from vascular plants, although with interspecific variability in the assimilated proportions of each source. The trophic niche of the invasive species overlapped with the trophic niche of all the native species, with the extent varying between sites and according to the species. From the three native species analysed, Potomida littoralis may be at a higher risk for competition for food with C. fluminea in the Tua basin, if food sources become limited, because this native mussel presented the narrowest trophic niche across sites and the highest probability of overlapping with the trophic niche of C. fluminea. Given the global widespread distribution of C. fluminea, the implementation of management measures devoted to the control or even eradication of this invasive alien species should be a conservation priority given its potential for competition with highly threatened native freshwater mussels.V.M. and P.C. were supported by doctoral grants SFRH/BD/108298/2015 and SFRH/BD/131814/2017, respectively, from the Portuguese Foundation for Science and Technology—FCT through POPH/FSE funds. FCT also supported M.L.L. under contract (2020.03608.CEECIND). This study was conducted within the project FRESHCO – Multiple implications of invasive species on Freshwater Mussel coextinction processes, supported by FCT and COMPETE funds (contract: PTDC/AGRFOR/1627/2014). This study was also supported by national funds through FCT – Foundation for Science and Technology within the scope of UIDB/04423/2020 and UIDP/04423/2020. We thank Jacinto Cunha for providing Figure 1.info:eu-repo/semantics/publishedVersio

    Life-history data of a key amphipod species from three NE Atlantic estuaries under different levels of anthropogenic pressure

    No full text
    Knowledge on population dynamics of ecosystem's key-species is invaluable to understand how populations will respond to natural and human-induced perturbations. The amphipod Echinogammarus marinus is a key-species from European estuarine habitats with a distribution ranging from Norway to Portugal [1]. The present article contains supportive data related to a research article entitled ‘Comparing production and life-history traits of a key amphipod species within and between estuaries under different levels of anthropogenic pressure’ [2]. The present dataset presents the density, biomass, fecundity, and production of E. marinus in three estuaries under different anthropogenic pressure and, within each estuary, at three sampling sites, which differed in terms of the distance to the estuary mouth, vegetation cover, and organic matter content. Monthly environmental abiotic data and seasonal concentration of PAH and other contaminants are also provided. Sampling took place monthly for 13 months at low tide on intertidal mudflats. At each site, Fucus fronds containing E. marinus individuals were randomly collected. All E. marinus individuals were counted, sexed, and measured under a binocular stereo microscope to estimate the density and the biomass of E. marinus in Fucus fronds. Finally, the annual production of E. marinus at each sampling site was estimated through the size-frequency method. This dataset may be used to compare population traits of E. marinus populations across different estuaries and it may overall assist designing studies regarding population dynamics and designing management strategies in coastal systems, namely targeting at habitat conservation and restoration. © 2021The present study was supported by the Strategic Funding UID/Multi/04423/2019 (J Campos) through national funds provided by FCT - Foundation for Science and Technology and European Regional Development Fund (ERDF), in the framework of the programme PT2020; Nor-Water Poluentes emergentes nas aguas da Galiza-Norte de Portugal: novas ferramentas para gestao de risco financed by Programa de Cooperaçao Interreg Portugal/Espanha [0725_NOR_WATER_1_P/ (POCTEP) 2014-2020]; ValorMar [24517 (10/SI/2016 - I&DT Empresarial - Programas Mobilizadores]; TRANSOBESOGEN - Evolutionary obesogenic answers: from epigenetic modules to transgenerational impacts in the ecosystem (TRANSOBESOGEN IA-2020-020); European Regional Development Fund (ERDF) and by the European Social Fund (ESF); National funds through FCT - Foundation for Science and Technology in the framework of the programme PT2020 [UIDB/04423/2020 and UIDP/04423/2020]
    corecore