18 research outputs found

    SIRT1 Mediates Melatonin’s Effects on Microglial Activation in Hypoxia: In Vitro and In Vivo Evidence

    Get PDF
    Melatonin exerts direct neuroprotection against cerebral hypoxic damage, but the mechanisms of its action on microglia have been less characterized. Using both in vitro and in vivo models of hypoxia, we here focused on the role played by silent mating type information regulation 2 homolog 1 (SIRT1) in melatonin’s effects on microglia. Viability of rat primary microglia or microglial BV2 cells and SH-SY5Y neurons was significantly reduced after chemical hypoxia with CoCl2 (250 µM for 24 h). Melatonin (1 µM) significantly attenuated CoCl2 toxicity on microglia, an effect prevented by selective SIRT1 inhibitor EX527 (5 µM) and AMP-activated protein kinase (AMPK) inhibitor BML-275 (2 µM). CoCl2 did not modify SIRT1 expression, but prevented nuclear localization, while melatonin appeared to restore it. CoCl2 induced nuclear localization of hypoxia-inducible factor-1α (HIF-1α) and nuclear factor-kappa B (NF-kB), an effect contrasted by melatonin in an EX527-dependent fashion. Treatment of microglia with melatonin attenuated potentiation of neurotoxicity. Common carotid occlusion was performed in p7 rats, followed by intraperitoneal injection of melatonin (10 mg/kg). After 24 h, the number of Iba1+ microglia in the hippocampus of hypoxic rats was significantly increased, an effect not prevented by melatonin. At this time, SIRT1 was only detectable in the amoeboid, Iba1+ microglial population selectively localized in the corpus callosum. In these cells, nuclear localization of SIRT1 was significantly lower in hypoxic animals, an effect prevented by melatonin. NF-kB showed an opposite expression pattern, where nuclear localization in Iba1+ cells was significantly higher in hypoxic, but not in melatonin-treated animals. Our findings provide new evidence for a direct effect of melatonin on hypoxic microglia through SIRT1, which appears as a potential pharmacological target against hypoxic-derived neuronal damage.Fil: Merlo, Sara. Universidad de Catania; ItaliaFil: Luaces, Juan Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Spampinato, Simona Federica. Universidad de Catania; ItaliaFil: Toro Urrego, Nicolas. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Caruso, Grazia Ilaria. Universidad de Catania; ItaliaFil: D´Amico, Fabio. Universidad de Catania; ItaliaFil: Capani, Francisco. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones Cardiológicas. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones Cardiológicas; ArgentinaFil: Sortino, Maria Angela. Universidad de Catania; Itali

    Brodifacoum Levels and Biomarkers in Coastal Fish Species following a Rodent Eradication in an Italian Marine Protected Area: Preliminary Results

    Get PDF
    Brodifacoum is the most common rodenticide used for the eradication of invasive rodents from islands. It blocks the vitamin K cycle, resulting in hemorrhages in target mammals. Non-target species may be incidentally exposed to brodifacoum, including marine species. A case study conducted on the Italian Marine Protected Area of Tavolara Island was reported after a rodent eradication using the aerial broadcast of a brodifacoum pellet. Brodifacoum presence and effects on non-target marine organisms were investigated. Different fish species were sampled, and a set of analyses was conducted to determine vitamin K and vitamin K epoxide reductase concentrations, prothrombin time, and erythrocytic nuclear abnormalities (ENA) assay. In all the examined organisms, brodifacoum was not detected. The results obtained showed differences in vitamin K and vitamin K epoxide concentrations among the samples studied, with a positive correlation for three species between vitamin K, vitamin K epoxide, and fish weight. The prothrombin time assay showed a good blood clotting capacity in the fish. Higher abnormality values were recorded for four species. The results of this study suggest that it is possible to hypothesize that the sampled fish were not likely to have been exposed to brodifacoum and that consequently there are no negative issues concerning human consumption

    Brodifacoum Levels and Biomarkers in Coastal Fish Species following a Rodent Eradication in an Italian Marine Protected Area: Preliminary Results

    No full text
    Brodifacoum is the most common rodenticide used for the eradication of invasive rodents from islands. It blocks the vitamin K cycle, resulting in hemorrhages in target mammals. Non-target species may be incidentally exposed to brodifacoum, including marine species. A case study conducted on the Italian Marine Protected Area of Tavolara Island was reported after a rodent eradication using the aerial broadcast of a brodifacoum pellet. Brodifacoum presence and effects on non-target marine organisms were investigated. Different fish species were sampled, and a set of analyses was conducted to determine vitamin K and vitamin K epoxide reductase concentrations, prothrombin time, and erythrocytic nuclear abnormalities (ENA) assay. In all the examined organisms, brodifacoum was not detected. The results obtained showed differences in vitamin K and vitamin K epoxide concentrations among the samples studied, with a positive correlation for three species between vitamin K, vitamin K epoxide, and fish weight. The prothrombin time assay showed a good blood clotting capacity in the fish. Higher abnormality values were recorded for four species. The results of this study suggest that it is possible to hypothesize that the sampled fish were not likely to have been exposed to brodifacoum and that consequently there are no negative issues concerning human consumption
    corecore