55 research outputs found
Photoresponsive Cellulose Nanocrystals
In this communication a method for the creation
of fluorescent cellulose nanoparticles using click chemistry
and subsequent photodimerization of the installed side‐
chains is demonstrated. In the first step, the primary
hydroxyl groups on the surface of the CNCs were
converted to carboxylic acids by using TEMPO‐mediated
hypohalite oxidation. The alkyne groups, essential for the
click reaction, were introduced into the surface of TEMPO‐
oxidized CNCs via carbodiimide‐mediated formation of an
amide linkage between monomers carrying an amine
functionality and carboxylic acid groups on the surface of
the TEMPO‐oxidized CNCs. Finally, the reaction of
surface‐modified TEMPO‐oxidized cellulose nanocrystals
and azido‐bearing coumarin and anthracene monomers
were carried out by means of a click chemistry, i.e.,
Copper(I)‐catalyzed Azide‐Alkyne Cycloaddition
(CuAAC) to produce highly photo‐responsive and
fluorescent cellulose nanoparticles. Most significantly, the
installed coumarin and/or anthracene side‐chains were
shown to undergo UV‐induced [2+2] and [4+4]
cycloaddition reactions, bringing and locking the cellulose
nanocrystals together. This effort paves the way towards
creating, cellulosic photo responsive nano‐arrays with the
potential of photo reversibility since these reactions are
known to be reversible at varying wavelengths.
Photoresponsive Cellulose Nanocrystals Regular Paper
In this communication a method for the creation of fluorescent cellulose nanoparticles using click chemistry and subsequent photodimerization of the installed side-chains is demonstrated. In the first step, the primary hydroxyl groups on the surface of the CNCs were converted to carboxylic acids by using TEMPO-mediated hypohalite oxidation. The alkyne groups, essential for the click reaction, were introduced into the surface of TEMPO-oxidized CNCs via carbodiimide-mediated formation of an amide linkage between monomers carrying an amine functionality and carboxylic acid groups on the surface of the TEMPO-oxidized CNCs. Finally, the reaction of surface-modified TEMPO-oxidized cellulose nanocrystals and azido-bearing coumarin and anthracene monomers were carried out by means of a click chemistry, i.e., Copper(I))-catalyzed Azide-Alkyne Cycloaddition (CuAAC) to produce highly photo-responsive and fluorescent cellulose nanoparticles. Most significantly, the installed coumarin and/or anthracene side-chains were shown to undergo UV-induced [2+2] and [4+4] cycloaddition reactions, bringing and locking the cellulose nanocrystals together. This effort paves the way towards creating, cellulosic photo responsive nano-arrays with the potential of photo reversibility since these reactions are known to be reversible at varying wavelengths.Peer reviewe
WtF-Nano : One-Pot Dewatering and Water-Free Topochemical Modification of Nanocellulose in Ionic Liquids or gamma-Valerolactone
Ionic liquids are used to dewater a suspension of birch Kraft pulp cellulose nanofibrils (CNF) and as a medium for water-free topochemical modification of the nanocellulose (a process denoted as "WtF-Nano"). Acetylation was applied as a model reaction to investigate the degree of modification and scope of effective ionic liquid structures. Little difference in reactivity was observed when water was removed, after introduction of an ionic liquid or molecular co-solvent. However, the viscoelastic properties of the CNF suspended in two ionic liquids show that the more basic, but non-dissolving ionic liquid, allows for better solvation of the CNF. Vibrio fischeri bacterial tests show that all ionic liquids in this study were harmless. Scanning electron microscopy and wide-angle X-ray scattering on regenerated samples show that the acetylated CNF is still in a fibrillar form. 1D and 2D NMR analyses, after direct dissolution in a novel ionic liquid electrolyte solution, indicate that both cellulose and residual xylan on the surface of the nanofibrils reacts to give acetate esters.Peer reviewe
Lignocellulosics: Renewable Feedstock for (Tailored) Functional Materials and Nanotechnology
Lignocellulosics: Renewable Feedstock for (Tailored) Functional Materials and Nanotechnology gives a comprehensive overview of recent advances in using lignocellulosic substrates in materials science and nanotechnology. The functionalization and processing of lignocellulosics are described via a number of examples that cover films, gels, sensors, pharmaceutics and energy storage. In addition to the research related to functional cellulose nanomaterials, there has been an increased interest in research on lignin and lignocellulosics. This book explains how utilizing biomaterials as a raw material allows ambitious reconstruction of smart materials that are green and multifunctional. As lignin as a valuable material has gained a lot of attention in the last few years, shifting from purely extraction and fundamental characterization, and now also focusing on the preparation of exciting materials, such as nanoparticles, readers will find this to be a comprehensive resource on the topic
- …