15 research outputs found

    Multiple Sclerosis-Associated Changes in the Composition and Immune Functions of Spore-Forming Bacteria

    Get PDF
    To address the impact of microbiome on disease development, it is essential to go beyond a descriptive study and evaluate the physiological importance of microbiome changes. Our study integrates computational analysis with in vitro and in vivo exploration of inflammatory properties of spore-forming microbial communities, revealing novel functional correlations. We specifically show that while small differences exist between the microbiomes of MS patients and healthy subjects, these differences are exacerbated in the chloroform-resistant fraction. We further demonstrate that, when purified from MS patients, this fraction is correlated with impaired immunomodulatory responses in vitro.Multiple sclerosis (MS) is an autoimmune disease of the central nervous system characterized by adaptive and innate immune system dysregulation. Recent work has revealed moderate alteration of gut microbial communities in subjects with MS and in experimental, induced models. However, a mechanistic understanding linking the observed changes in the microbiota and the presence of the disease is still missing. Chloroform-resistant, spore-forming bacteria, which primarily belong to the classes Bacilli and Clostridia in the phylum Firmicutes, have been shown to exhibit immunomodulatory properties in vitro and in vivo, but they have not yet been characterized in the context of human disease. This study addresses the community composition and immune function of this bacterial fraction in MS. We identify MS-associated spore-forming taxa (primarily in the class Clostridia) and show that their presence correlates with impaired differentiation of IL-10-secreting, regulatory T lymphocytes in vitro. Colonization of antibiotic-treated mice with spore-forming bacteria allowed us to identify some bacterial taxa favoring IL-10+ lymphocyte differentiation and others inducing differentiation of proinflammatory, IFN-γ+ T lymphocytes. However, when fed into antibiotic-treated mice, both MS and control-derived spore-forming bacteria were able to induce similar IL-10-expressing Treg immunoregulatory responses, thus ameliorating symptoms of experimental allergic encephalomyelitis (EAE). Our analysis also identified Akkermansia muciniphila as a key organism that may interact either directly or indirectly with spore-forming bacteria to exacerbate the inflammatory effects of MS-associated gut microbiota. Thus, changes in the spore-forming fraction may influence T lymphocyte-mediated inflammation in MS. This experimental approach of isolating a subset of microbiota based on its functional characteristics may be useful to investigate other microbial fractions at greater depth

    The MS-Associated Gut Microbiome

    No full text
    Category: Microbiome Background: An essential function of the gut microbiota is to regulate immune responses, including T lymphocyte functions in health and disease. Objectives: We hypothesized that gut microbiota contribute to the pathogenesis of MS. Methods: We analyzed the microbiome of stool samples from 64 treatment-naïve MS patients and 68 healthy controls using amplicon sequencing of the 16S V4 region of the rRNA gene. We characterized immune profiles of cultured PBMC in response to specific bacteria harbored by MS patients. Results: We found that MS patients exhibited impaired in-vitro Treg differentiation in response to their own microbiota. No major shifts in microbial community structure were observed. However, we were able to identify individual microbial taxa that were significantly associated with MS and studied their ability to regulate primary human T lymphocyte differentiation in vitro. We next conducted in-vitro assays to characterize the functional properties of the MS gut microbiota. We found that MS-associated Acinetobacter calcoaceticus was sufficient to reduce Treg differentiation and increase both Th1 and Th2 differentiation. The expansion of Th1 lymphocytes was recapitulated by Akkermansia muciniphila, which was also more abundant in MS patients. In contrast, Parabacteroidesdistasonis, which was significantly reduced in MS microbiomes, stimulated CD4+ T lymphocyte differentiation into a CD25+ IL-10+ regulatory phenotype. Our results suggest that MS-associated changes in microbiota alter T lymphocyte differentiation in a complex fashion and likely through multiple mechanisms. Finally, microbiota transplants from MS patients into germ-free mice results in more severe experimental autoimmune encephalomyelitis and reduced Tregs compared to controls. Conclusion: This study identifies specific human gut bacteria that regulate adaptive autoimmune responses, suggesting therapeutic targeting of the microbiota as a novel treatment for MS

    Bungaku zasshi "Waroni" ni okeru chiiki shugiteki kito no seisei to tenkai : bungaku seido fukei hyosho shakai gengoteki jokyo (honbun)

    Get PDF
    The gut microbiota regulates T cell functions throughout the body. We hypothesized that intestinal bacteria impact the pathogenesis of multiple sclerosis (MS), an autoimmune disorder of the CNS and thus analyzed the microbiomes of 71 MS patients not undergoing treatment and 71 healthy controls. Although no major shifts in microbial community structure were found, we identified specific bacterial taxa that were significantly associated with MS. Akkermansia muciniphila and Acinetobacter calcoaceticus, both increased in MS patients, induced proinflammatory responses in human peripheral blood mononuclear cells and in monocolonized mice. In contrast, Parabacteroides distasonis, which was reduced in MS patients, stimulated antiinflammatory IL-10–expressing human CD4+CD25+ T cells and IL-10+FoxP3+ Tregs in mice. Finally, microbiota transplants from MS patients into germ-free mice resulted in more severe symptoms of experimental autoimmune encephalomyelitis and reduced proportions of IL-10+ Tregs compared with mice “humanized” with microbiota from healthy controls. This study identifies specific human gut bacteria that regulate adaptive autoimmune responses, suggesting therapeutic targeting of the microbiota as a treatment for MS
    corecore