20 research outputs found

    The Making of a Compound Inflorescence in Tomato and Related Nightshades

    Get PDF
    Variation in the branching of plant inflorescences determines flower number and, consequently, reproductive success and crop yield. Nightshade (Solanaceae) species are models for a widespread, yet poorly understood, program of eudicot growth, where short side branches are initiated upon floral termination. This “sympodial” program produces the few-flowered tomato inflorescence, but the classical mutants compound inflorescence (s) and anantha (an) are highly branched, and s bears hundreds of flowers. Here we show that S and AN, which encode a homeobox transcription factor and an F-box protein, respectively, control inflorescence architecture by promoting successive stages in the progression of an inflorescence meristem to floral specification. S and AN are sequentially expressed during this gradual phase transition, and the loss of either gene delays flower formation, resulting in additional branching. Independently arisen alleles of s account for inflorescence variation among domesticated tomatoes, and an stimulates branching in pepper plants that normally have solitary flowers. Our results suggest that variation of Solanaceae inflorescences is modulated through temporal changes in the acquisition of floral fate, providing a flexible evolutionary mechanism to elaborate sympodial inflorescence shoots

    Abstracts of presentations on selected topics at the XIVth international plant protection congress (IPPC) July 25-30, 1999

    Get PDF

    Acute Kidney Injury Recovery Patterns in ST-Segment Elevation Myocardial Infarction Patients

    No full text
    Background: Acute kidney injury (AKI) is a frequent complication in patients with ST-segment elevation myocardial infarction (STEMI) undergoing percutaneous coronary intervention (PCI). Identification of different AKI recovery patterns may improve patient prognostic stratification. We investigated the clinical relevance of AKI recovery patterns among STEMI patients undergoing PCI. Methods: A retrospective study of 2943 STEMI patients undergoing PCI. The incidence of renal impairment, in-hospital complications, short and long-term mortality, were compared between patients without AKI, with early recovery defined as a return to baseline creatinine within 72 h, and no AKI recovery/delayed recovery defined as all other AKI cases. Results: A total of 255 (8.7%) patients developed AKI, of whom 124/255 (49%) patients had an early recovery, whereas 131/255 (51%) had no AKI recovery/delayed recovery. Patients without recovery were more likely to have in-hospital complications and higher long-term mortality (36.64% vs. 7.25%%; p < 0.001). In a multivariable regression model, the mortality hazard ratio (HR) for long term mortality remained significant for patients with no/delayed recovery AKI (HR 7.76, 95% CI 4.69 to 12.86, p < 0.001), and a strong trend among patients with resolving AKI (HR 2.09, 95% CI 0.933–4.687, p = 0.071). Conclusions: Among STEMI patients undergoing PCI, the recovery pattern of AKI is a valuable prognostic marker

    CaMYB12-like underlies a major QTL for flavonoid content in pepper (Capsicum annuum) fruit

    No full text
    The regulation of flavonoid biosynthesis is only partially explored in pepper (Capsicum annuum L.). The genetic basis underlying flavonoid variation in pepper fruit was studied.Variation of flavonoids in fruit of a segregating F2 population was studied using LC–MS followed by quantitative trait locus (QTL) analysis. Near-isogenic lines (NILs), BC1S1 populations, virus-induced gene silenced (VIGS) and transgenic overexpression were used to confirm the QTL and the underlying candidate gene.A major QTL for flavonoid content was found in chromosome 5, and a CaMYB12-like transcription factor gene was identified as candidate gene. Near-isogenic lines (NILs) contrasting for CaMYB12-like confirmed its association with the flavonoid content variation. Virus-induced gene silencing (VIGS) of CaMYB12-like led to a significant decrease in the expression of several flavonoid pathway genes and a drastic decrease in flavonoid levels in silenced fruits. Expression of CaMYB12-like in the tomato slmyb12 mutant led to enhanced levels of several flavonoids in the fruit skin. Introgression of the CaMYB12-like allele into two cultivated varieties also increased flavonoid content in their fruits.A combination of metabolomic, genetic and gene functional analyses led to discovery of CaMYB12-like as a major regulator of flavonoid variation in pepper fruit and demonstrated its potential to breed for high-flavonoid content in cultivated pepper

    Exploration of high‐throughput data for heat tolerance selection in Capsicum annuum

    No full text
    Abstract Recently, there has been a substantial increase in high‐throughput technologies that generate highly complex large datasets for use in the sciences. Plant breeding and genetics have benefited from this data explosion where many public and private institutions now implement genomic and phenomic data to predict performance thus informing germplasm selection. However, the multitude of methodologies and data generates a situation of strategic uncertainty. We set out to compare different methods of genomic and phenomic selection in the Capsicum core collection, developed through the G2P‐SOL project, producing a combination of unique and similar selected genotypes for heat tolerance. Combined, the methods tested identified a total of 33 genotypes that show tremendous promise for use as parents in heat tolerance breeding: with 13 of these being present in more than 1 selection method. Combining classical and multispectral phenotyping methods produced better selection results than either method alone. When each method was conducted without being informed by the other, similar results were obtained. Our weighted rank‐sum selection index identified 10 entries across environments that show heat tolerance, 8 of which are also selected within heat environments. This suggests that different breeding programs can reach similar results despite having different logistical constraints. Our case study within pepper germplasm using phenomic and genomic data exhibits the potential to compensate for the dearth of germplasm knowledge with high‐throughput data as well as the converse, to compensate for logistical or financial constraint to new technologies with breeder knowledge
    corecore