3,267 research outputs found

    Boosting Up the Low Catalytic Activity of Silver for H2 Production on Ag/TiO2 Photocatalyst: Thiocyanate as a Selective Modifier

    Get PDF
    Noble metal cocatalysts like Pt have been widely employed as an essential ingredient in many kinds of photocatalytic materials for solar hydrogen production. The high material cost of Pt is the biggest limitation. Silver is far less expensive but much less active than Pt and Au as a hydrogen evolving catalyst. Here we demonstrate a new strategy to boost up the activity of silver in Ag/TiO2 for photocatalytic H-2 production via forming a simple surface complexation of thiocyanate (SCN-) on silver. The addition of thiocyanate in the suspension of Ag/TiO2 markedly enhanced the photocatalytic production of H-2 by about 4 times. Thiocyanate was not consumed at all during the photoreaction, which ruled out the role of thiocyanate as an electron donor. Such a positive role of thiocyanate was not observed with bare TiO2, Pt/TiO2, and Au/TiO2. The selective chemisorption of thiocyanate on silver was confirmed by the analyses of Raman spectroscopy and spot-profile energy-dispersive spectroscopy. In the presence of thiocyanate, the overpotential for water reduction on Ag/TiO2 electrode was slightly reduced, and the interfacial charge transfer resistance on Ag/TiO2 (measured by electrochemical impedance spectroscopy) was significantly decreased, whereas other electrode systems (bare TiO2, Au/TiO2, and Pt/TiO2) showed the opposite effect of thiocyanate. These results indicate that the adsorption of thiocyanate on Ag facilitates the transfer of photogenerated electrons on the Ag/TiO2 electrode. It is proposed that the formation of Ag-SCN surface complex enhances the interfacial electron transfer rate and facilitates the reduction of protons on Ag/TiO2.115640Ysciescopu

    Binary black hole merger dynamics and waveforms

    Get PDF
    We study dynamics and radiation generation in the last few orbits and merger of a binary black hole system, applying recently developed techniques for simulations of moving black holes. Our analysis of the gravitational radiation waveforms and dynamical black hole trajectories produces a consistent picture for a set of simulations with black holes beginning on circular-orbit trajectories at a variety of initial separations. We find profound agreement at the level of one percent among the simulations for the last orbit, merger and ringdown. We are confident that this part of our waveform result accurately represents the predictions from Einstein's General Relativity for the final burst of gravitational radiation resulting from the merger of an astrophysical system of equal-mass non-spinning black holes. The simulations result in a final black hole with spin parameter a/m=0.69. We also find good agreement at a level of roughly 10 percent for the radiation generated in the preceding few orbits.Comment: 11 pages, 11 figures, submitted to PRD, update citations, minor change

    Robust Co-catalytic Performance of Nanodiamonds Loaded on WO3 for the Decomposition of Volatile Organic Compounds under Visible Light

    Get PDF
    Proper co-catalysts (usually noble metals), combined with semiconductor materials, are commonly needed to maximize the efficiency of photocatalysis. Search for cost-effective and practical alternatives for noble-metal co-catalysts is under intense investigation. In this work, nanodiamond (ND), which is a carbon nanomaterial with a unique sp(3)(core)/sp(2)(shell) structure, was combined with WO3 (as an alternative co-catalyst for Pt) and applied for the degradation of volatile organic compounds under visible light. NDs-loaded WO3 showed a highly enhanced photocatalytic activity for the degradation of acetaldehyde (similar to 17 times higher than bare WO3), which is more efficient than other well-known co-catalysts (Ag, Pd, Au, and CuO) loaded onto WO3 and comparable to Pt-loaded WO3. Various surface modifications of ND and photoelectochemical measurements revealed that the graphitic carbon shell (sp(2)) on the diamond core (spa) plays a crucial role in charge separation and the subsequent interfacial charge transfer. As a result, ND/WO3 showed much higher production of OH radicals than bare WO3 under visible light. Since ND has a highly transparent characteristic, the light shielding that is often problematic with other carbon-based co-catalysts was considerably lower with NDs-loaded WO3. As a result, the photocatalytic activity of NDs/WO3 was higher than that of WO3 loaded with other carbon-based co-catalysts (graphene oxide or reduced graphene oxide). A range of spectroscopic and photo(electro)chemical techniques were systematically employed to investigate the properties of NDs-loaded WO3. ND is proposed as a cost-effective and practical nanomaterial to replace expensive noble-metal co-catalysts.1124Ysciescopu

    Evolving a puncture black hole with fixed mesh refinement

    Full text link
    We present an algorithm for treating mesh refinement interfaces in numerical relativity. We detail the behavior of the solution near such interfaces located in the strong field regions of dynamical black hole spacetimes, with particular attention to the convergence properties of the simulations. In our applications of this technique to the evolution of puncture initial data with vanishing shift, we demonstrate that it is possible to simultaneously maintain second order convergence near the puncture and extend the outer boundary beyond 100M, thereby approaching the asymptotically flat region in which boundary condition problems are less difficult and wave extraction is meaningful.Comment: 18 pages, 12 figures. Minor changes, final PRD versio

    Analysis of ``Gauge Modes'' in Linearized Relativity

    Get PDF
    By writing the complete set of 3+13 + 1 (ADM) equations for linearized waves, we are able to demonstrate the properties of the initial data and of the evolution of a wave problem set by Alcubierre and Schutz. We show that the gauge modes and constraint error modes arise in a straightforward way in the analysis, and are of a form which will be controlled in any well specified convergent computational discretization of the differential equations.Comment: 11pages LaTe

    Safety and optimal neuroprotection of neu2000 in acute ischemic stroke with reCanalization: study protocol for a randomized, double-blinded, placebo-controlled, phase-II trial

    Get PDF
    BACKGROUND: The potential of neuroprotective agents should be revisited in the era of endovascular thrombectomy (EVT) for acute large-artery occlusion because their preclinical effects have been optimized for ischemia and reperfusion injury. Neu2000, a derivative of sulfasalazine, is a multi-target neuroprotectant. It selectively blocks N-methyl-D-aspartate receptors and scavenges for free radicals. This trial aimed to determine whether neuroprotectant administration before EVT is safe and leads to a more favorable outcome. METHODS: This trial is a phase-II, multicenter, three-arm, randomized, double-blinded, placebo-controlled, blinded-endpoint drug trial that enrolled participants aged ≥ 19 years undergoing an EVT attempt less than 8 h from symptom onset, with baseline National Institutes of Health Stroke Scale (NIHSS) score ≥ 8, Alberta Stroke Program Early CT score ≥ 6, evidence of large-artery occlusion, and at least moderate collaterals on computed tomography angiography. EVT-attempted patients are randomized into control, low-dose (2.75 g), and high-dose (5.25 g) Neu2000KWL over 5 days. Seventy participants per group are enrolled for 90% power, assuming that the treatment group has a 28.4% higher proportion of participants with functional independence than the placebo group. The primary outcome, based on intention-to-treat criteria is the improvement of modified Rankin Scale (mRS) scores at 3 months using a dichotomized model. Safety outcomes include symptomatic intracranial hemorrhage within 5 days. Secondary outcomes are distributional change of mRS, mean differences in NIHSS score, proportion of NIHSS score 0-2, and Barthel Index > 90 at 1 and 4 weeks, and 3 months. DISCUSSION: The trial results may provide information on new therapeutic options as multi-target neuroprotection might mitigate reperfusion injury in patients with acute ischemic stroke before EVT

    Three-dimensional adaptive evolution of gravitational waves in numerical relativity

    Get PDF
    Adaptive techniques are crucial for successful numerical modeling of gravitational waves from astrophysical sources such as coalescing compact binaries, since the radiation typically has wavelengths much larger than the scale of the sources. We have carried out an important step toward this goal, the evolution of weak gravitational waves using adaptive mesh refinement in the Einstein equations. The 2-level adaptive simulation is compared with unigrid runs at coarse and fine resolution, and is shown to track closely the features of the fine grid run.Comment: REVTeX, 7 pages, including three figures; submitted to Physical Review

    β-catenin activation down-regulates cell-cell junction-related genes and induces epithelial-to-mesenchymal transition in colorectal cancers

    Get PDF
    WNT signaling activation in colorectal cancers (CRCs) occurs through APC inactivation or β-catenin mutations. Both processes promote β-catenin nuclear accumulation, which up-regulates epithelial-to-mesenchymal transition (EMT). We investigated β-catenin localization, transcriptome, and phenotypic differences of HCT116 cells containing a wild-type (HCT116-WT) or mutant β-catenin allele (HCT116-MT), or parental cells with both WT and mutant alleles (HCT116-P). We then analyzed β-catenin expression and associated phenotypes in CRC tissues. Wild-type β-catenin showed membranous localization, whereas mutant showed nuclear localization; both nuclear and non-nuclear localization were observed in HCT116-P. Microarray analysis revealed down-regulation of Claudin-7 and E-cadherin in HCT116-MT vs. HCT116-WT. Claudin-7 was also down-regulated in HCT116-P vs. HCT116-WT without E-cadherin dysregulation. We found that ZEB1 is a critical EMT factor for mutant β-catenin-mediated loss of E-cadherin and Claudin-7 in HCT116-P and HCT116-MT cells. We also demonstrated that E-cadherin binds to both WT and mutant β-catenin, and loss of E-cadherin releases β-catenin from the cell membrane and leads to its degradation. Alteration of Claudin-7, as well as both Claudin-7 and E-cadherin respectively caused tight junction (TJ) impairment in HCT116-P, and dual loss of TJs and adherens junctions (AJs) in HCT116-MT. TJ loss increased cell motility, and subsequent AJ loss further up-regulated that. Immunohistochemistry analysis of 101 CRCs revealed high (14.9%), low (52.5%), and undetectable (32.6%) β-catenin nuclear expression, and high β-catenin nuclear expression was significantly correlated with overall survival of CRC patients (P = 0.009). Our findings suggest that β-catenin activation induces EMT progression by modifying cell-cell junctions, and thereby contributes to CRC aggressiveness

    The mu problem and sneutrino inflation

    Get PDF
    We consider sneutrino inflation and post-inflation cosmology in the singlet extension of the MSSM with approximate Peccei-Quinn(PQ) symmetry, assuming that supersymmetry breaking is mediated by gauge interaction. The PQ symmetry is broken by the intermediate-scale VEVs of two flaton fields, which are determined by the interplay between radiative flaton soft masses and higher order terms. Then, from the flaton VEVs, we obtain the correct mu term and the right-handed(RH) neutrino masses for see-saw mechanism. We show that the RH sneutrino with non-minimal gravity coupling drives inflation, thanks to the same flaton coupling giving rise to the RH neutrino mass. After inflation, extra vector-like states, that are responsible for the radiative breaking of the PQ symmetry, results in thermal inflation with the flaton field, solving the gravitino problem caused by high reheating temperature. Our model predicts the spectral index to be n_s\simeq 0.96 due to the additional efoldings from thermal inflation. We show that a right dark matter abundance comes from the gravitino of 100 keV mass and a successful baryogenesis is possible via Affleck-Dine leptogenesis.Comment: 27 pages, no figures, To appear in JHE

    Design Considerations for Tumor-Targeted Nanoparticles

    Get PDF
    Inorganic/organic hybrid nanoparticles are potentially useful in biomedicine, but to avoid non-specific background fluorescence and long-term toxicity, they need to be cleared from the body within a reasonable timescale1. Previously, we have shown that rigid spherical nanoparticles such as quantum dots can be cleared by the kidneys if they have a hydrodynamic diameter of approximately 5.5 nm and a zwitterionic surface charge2. Here, we show that quantum dots functionalized with high-affinity small-molecule ligands that target tumours can also be cleared by the kidneys if their hydrodynamic diameter is less than this value, which sets an upper limit of 5–10 ligands per quantum dot for renal clearance. Animal models of prostate cancer and melanoma show receptor-specific imaging and renal clearance within 4 h post-injection. This study suggests a set of design rules for the clinical translation of targeted nanoparticles that can be eliminated through the kidneys.National Science Foundation (U.S.) (NSF-0070319)National Institutes of Health (U.S.) (NIH GM68762)National Institutes of Health (U.S.) (NIH grant no. R33-EB-000673)National Institutes of Health (U.S.) ( NIH grant no. R01-CA-115296)National Institutes of Health (U.S.) (MIT-Harvard NanoMedical Consortium (1U54-CA119349, a Center of Cancer Nanotechnology Excellence))Bank of AmericaMedical Foundation, inc. (Charles A. King Trust Postdoctoral Research Fellowship Program)cance
    corecore