3,789 research outputs found
The Contractile Vacuole and Related Structures in Tetrahymena pyriformis *
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/100178/1/j.1550-7408.1964.tb01752.x.pd
One Time Programmable Antifuse Memory Based on Bulk Junctionless Transistor
One time programmable (OTP) antifuse base memory is demonstrated based on a bulk junctionless gate-all-around (GAA) nanowire transistor technology. The presented memory consists of a single transistor (1T) footprint without any process modification. The source/drain (S/D) and gate respectively become bit line and word line where the antifuse is formed by oxide breakdown across the gate and the channel. The channel is connected directly to the bit line due to junctionless S/D and inherently isolated from the neighboring cell by the GAA channel. Therefore, an array of 1T antifuse OTP can be a candidate for the sub-5-nanometer technology node
Korea’s technical assistance for better governance
노트 : - Paper for International Conference on U.S.-Korea Dialogue on Strategies for Effective Development Cooperation
- Organized by Asia Foundation October 17-18, 2011 Seoul, Korea
행사명 : International Conference on U.S.-Korea Dialogue on Strategies for Effective Development Cooperatio
Akt1-Inhibitor of DNA binding2 is essential for growth cone formation and axon growth and promotes central nervous system axon regeneration.
Mechanistic studies of axon growth during development are beneficial to the search for neuron-intrinsic regulators of axon regeneration. Here, we discovered that, in the developing neuron from rat, Akt signaling regulates axon growth and growth cone formation through phosphorylation of serine 14 (S14) on Inhibitor of DNA binding 2 (Id2). This enhances Id2 protein stability by means of escape from proteasomal degradation, and steers its localization to the growth cone, where Id2 interacts with radixin that is critical for growth cone formation. Knockdown of Id2, or abrogation of Id2 phosphorylation at S14, greatly impairs axon growth and the architecture of growth cone. Intriguingly, reinstatement of Akt/Id2 signaling after injury in mouse hippocampal slices redeemed growth promoting ability, leading to obvious axon regeneration. Our results suggest that Akt/Id2 signaling is a key module for growth cone formation and axon growth, and its augmentation plays a potential role in CNS axonal regeneration
Whole exome and targeted deep sequencing identify genome-wide allelic loss and frequent SETDB1 mutations in malignant pleural mesotheliomas.
Malignant pleural mesothelioma (MPM), a rare malignancy with a poor prognosis, is mainly caused by exposure to asbestos or other organic fibers, but the underlying genetic mechanism is not fully understood. Genetic alterations and causes for multiple primary cancer development including MPM are unknown. We used whole exome sequencing to identify somatic mutations in a patient with MPM and two additional primary cancers who had no evidence of venous, arterial, lymphovascular, or perineural invasion indicating dissemination of a primary lung cancer to the pleura. We found that the MPM had R282W, a key TP53 mutation, and genome-wide allelic loss or loss of heterozygosity, a distinct genomic alteration not previously described in MPM. We identified frequent inactivating SETDB1 mutations in this patient and in 68 additional MPM patients (mutation frequency: 10%, 7/69) by targeted deep sequencing. Our observations suggest the possibility of a new genetic mechanism in the development of either MPM or multiple primary cancers. The frequent SETDB1 inactivating mutations suggest there could be new diagnostic or therapeutic options for MPM
- …