96 research outputs found

    Identification and characterization of subfamily-specific signatures in a large protein superfamily by a hidden Markov model approach

    Get PDF
    BACKGROUND: Most profile and motif databases strive to classify protein sequences into a broad spectrum of protein families. The next step of such database studies should include the development of classification systems capable of distinguishing between subfamilies within a structurally and functionally diverse superfamily. This would be helpful in elucidating sequence-structure-function relationships of proteins. RESULTS: Here, we present a method to diagnose sequences into subfamilies by employing hidden Markov models (HMMs) to find windows of residues that are distinct among subfamilies (called signatures). The method starts with a multiple sequence alignment (MSA) of the subfamily. Then, we build a HMM database representing all sliding windows of the MSA of a fixed size. Finally, we construct a HMM histogram of the matches of each sliding window in the entire superfamily. To illustrate the efficacy of the method, we have applied the analysis to find subfamily signatures in two well-studied superfamilies: the cadherin and the EF-hand protein superfamilies. As a corollary, the HMM histograms of the analyzed subfamilies revealed information about their Ca(2+) binding sites and loops. CONCLUSIONS: The method is used to create HMM databases to diagnose subfamilies of protein superfamilies that complement broad profile and motif databases such as BLOCKS, PROSITE, Pfam, SMART, PRINTS and InterPro

    Domain fusion analysis by applying relational algebra to protein sequence and domain databases

    Get PDF
    BACKGROUND: Domain fusion analysis is a useful method to predict functionally linked proteins that may be involved in direct protein-protein interactions or in the same metabolic or signaling pathway. As separate domain databases like BLOCKS, PROSITE, Pfam, SMART, PRINTS-S, ProDom, TIGRFAMs, and amalgamated domain databases like InterPro continue to grow in size and quality, a computational method to perform domain fusion analysis that leverages on these efforts will become increasingly powerful. RESULTS: This paper proposes a computational method employing relational algebra to find domain fusions in protein sequence databases. The feasibility of this method was illustrated on the SWISS-PROT+TrEMBL sequence database using domain predictions from the Pfam HMM (hidden Markov model) database. We identified 235 and 189 putative functionally linked protein partners in H. sapiens and S. cerevisiae, respectively. From scientific literature, we were able to confirm many of these functional linkages, while the remainder offer testable experimental hypothesis. Results can be viewed at . CONCLUSION: As the analysis can be computed quickly on any relational database that supports standard SQL (structured query language), it can be dynamically updated along with the sequence and domain databases, thereby improving the quality of predictions over time

    A fluorescent cassette-based strategy for engineering multiple domain fusion proteins

    Get PDF
    BACKGROUND: The engineering of fusion proteins has become increasingly important and most recently has formed the basis of many biosensors, protein purification systems, and classes of new drugs. Currently, most fusion proteins consist of three or fewer domains, however, more sophisticated designs could easily involve three or more domains. Using traditional subcloning strategies, this requires micromanagement of restriction enzymes sites that results in complex workaround solutions, if any at all. RESULTS: Therefore, to aid in the efficient construction of fusion proteins involving multiple domains, we have created a new expression vector that allows us to rapidly generate a library of cassettes. Cassettes have a standard vector structure based on four specific restriction endonuclease sites and using a subtle property of blunt or compatible cohesive end restriction enzymes, they can be fused in any order and number of times. Furthermore, the insertion of PCR products into our expression vector or the recombination of cassettes can be dramatically simplified by screening for the presence or absence of fluorescence. CONCLUSIONS: Finally, the utility of this new strategy was demonstrated by the creation of basic cassettes for protein targeting to subcellular organelles and for protein purification using multiple affinity tags

    Molecular structure and target recognition of neuronal calcium sensor proteins

    Get PDF
    Neuronal calcium sensor (NCS) proteins, a sub-branch of the EF-hand superfamily, are expressed in the brain and retina where they transduce calcium signals and are genetically linked to degenerative diseases. The amino acid sequences of NCS proteins are highly conserved but their physiological functions are quite distinct. Retinal recoverin and guanylate cyclase activating proteins (GCAPs) both serve as calcium sensors in retinal rod cells, neuronal frequenin (NCS1) modulates synaptic activity and neuronal secretion, K+ channel interacting proteins (KChIPs) regulate ion channels to control neuronal excitability, and DREAM (KChIP3) is a transcriptional repressor that regulates neuronal gene expression. Here we review the molecular structures of myristoylated forms of NCS1, recoverin, and GCAP1 that all look very different, suggesting that the sequestered myristoyl group helps to refold these highly homologous proteins into very different structures. The molecular structure of NCS target complexes have been solved for recoverin bound to rhodopsin kinase (RK), NCS-1 bound to phosphatidylinositol 4-kinase, and KChIP1 bound to A-type K+ channels. We propose that N-terminal myristoylation is critical for shaping each NCS family member into a different structure, which upon Ca2+-induced extrusion of the myristoyl group exposes a unique set of previously masked residues that interact with a particular physiological target

    Real-time NMR monitoring of biological activities in complex physiological environments

    Get PDF
    Biological reactions occur in a highly organized spatiotemporal context and with kinetics that are modulated by multiple environmental factors. To integrate these variables in our experimental investigations of 'native' biological activities, we require quantitative tools for time-resolved in situ analyses in physiologically relevant settings. Here, we outline the use of high-resolution NMR spectroscopy to directly observe biological reactions in complex environments and in real-time. Specifically, we discuss how real-time NMR (RT-NMR) methods have delineated insights into metabolic processes, post-translational protein modifications, activities of cellular GTPases and their regulators, as well as of protein folding events.Fil: Smith, Matthew J.. Ontario Cancer Institute; CanadƔFil: Marshall, Christopher B.. Ontario Cancer Institute; CanadƔFil: Theillet, Francois Xavier. Leibniz Institute of Molecular Pharmacology; AlemaniaFil: Binolfi, AndrƩs. Consejo Nacional de Investigaciones Cientƭficas y TƩcnicas; Argentina. Leibniz Institute of Molecular Pharmacology; AlemaniaFil: Selenko, Philipp. Leibniz Institute of Molecular Pharmacology; AlemaniaFil: Ikura, Mitsuhiko. Ontario Cancer Institute; CanadƔ. University of Toronto; Canad

    The N-terminus of hTERT contains a DNA-binding domain and is required for telomerase activity and cellular immortalization

    Get PDF
    Telomerase defers the onset of telomere damage-induced signaling and cellular senescence by adding DNA onto chromosome ends. The ability of telomerase to elongate single-stranded telomeric DNA depends on the reverse transcriptase domain of TERT, and also relies on protein:DNA contacts outside the active site. We purified the N-terminus of human TERT (hTEN) from Escherichia coli, and found that it binds DNA with a preference for telomeric sequence of a certain length and register. hTEN interacted with the C-terminus of hTERT in trans to reconstitute enzymatic activity in vitro. Mutational analysis of hTEN revealed that amino acids Y18 and Q169 were required for telomerase activity in vitro, but not for the interaction with telomere DNA or the C-terminus. These mutants did not reconstitute telomerase activity in cells, maintain telomere length, or extend cellular lifespan. In addition, we found that T116/T117/S118, while dispensable in vitro, were required for cellular immortalization. Thus, the interactions of hTEN with telomere DNA and the C-terminus of hTERT are functionally separable from the role of hTEN in telomere elongation activity in vitro and in vivo, suggesting other roles for the protein and nucleic acid interactions of hTEN within, and possibly outside, the telomerase catalytic core

    Structural and functional conservation of key domains in InsP3 and ryanodine receptors.

    Get PDF
    Inositol-1,4,5-trisphosphate receptors (InsP(3)Rs) and ryanodine receptors (RyRs) are tetrameric intracellular Ca(2+) channels. In each of these receptor families, the pore, which is formed by carboxy-terminal transmembrane domains, is regulated by signals that are detected by large cytosolic structures. InsP(3)R gating is initiated by InsP(3) binding to the InsP(3)-binding core (IBC, residues 224-604 of InsP(3)R1) and it requires the suppressor domain (SD, residues 1-223 of InsP(3)R1). Here we present structures of the amino-terminal region (NT, residues 1-604) of rat InsP(3)R1 with (3.6ā€‰Ć…) and without (3.0ā€‰Ć…) InsP(3) bound. The arrangement of the three NT domains, SD, IBC-Ī² and IBC-Ī±, identifies two discrete interfaces (Ī± and Ī²) between the IBC and SD. Similar interfaces occur between equivalent domains (A, B and C) in RyR1 (ref. 9). The orientations of the three domains when docked into a tetrameric structure of InsP(3)R and of the ABC domains docked into RyR are remarkably similar. The importance of the Ī±-interface for activation of InsP(3)R and RyR is confirmed by mutagenesis and, for RyR, by disease-causing mutations. Binding of InsP(3) causes partial closure of the clam-like IBC, disrupting the Ī²-interface and pulling the SD towards the IBC. This reorients an exposed SD loop ('hotspot' (HS) loop) that is essential for InsP(3)R activation. The loop is conserved in RyR and includes mutations that are associated with malignant hyperthermia and central core disease. The HS loop interacts with an adjacent NT, suggesting that activation re-arranges inter-subunit interactions. The A domain of RyR functionally replaced the SD in full-length InsP(3)R, and an InsP(3)R in which its C-terminal transmembrane region was replaced by that from RyR1 was gated by InsP(3) and blocked by ryanodine. Activation mechanisms are conserved between InsP(3)R and RyR. Allosteric modulation of two similar domain interfaces within an N-terminal subunit reorients the first domain (SD or A domain), allowing it, through interactions of the second domain of an adjacent subunit (IBC-Ī² or B domain), to gate the pore

    Characterization of the ATP-binding domain of the sarco(endo)plasmic reticulum Ca2+-ATPase: probing nucleotide binding by multidimensional NMR

    Get PDF
    ABSTRACT: The skeletal muscle sarco(endo)plasmic reticulum Ca 2+ -ATPase (SERCA1a) mediates muscle relaxation by pumping Ca 2+ from the cytosol to the ER/SR lumen. In efforts aimed at understanding the structural basis for the conformational changes accompanying the reaction cycle catalyzed by SERCA1a, we have studied the ATP-binding domain of SERCA1a in both nucleotide-bound and -free forms by NMR. Limited proteolysis analyses guided us to express a 28 kDa stably folded fragment containing the nucleotide-binding domain of SERCA1a spanning residues Thr357-Leu600. ATP binding activity was demonstrated for this fragment by a FITC competition assay. A nearly complete backbone resonance assignment of this 28 kDa ATP-binding fragment, in both the AMP-PNP-bound and -free forms, was obtained by means of heteronuclear multidimensional NMR techniques. NMR titration experiments with AMP-PNP revealed a confined nucleotide-binding site which coincides with a cytoplasmic pocket region identified in the crystal structure of apo-SERCA1a. These results are consistent with previous site-directed mutagenesis studies of SERCA1a

    Solution Structure of a TBPā€“TAFII230 Complex Protein Mimicry of the Minor Groove Surface of the TATA Box Unwound by TBP

    Get PDF
    AbstractGeneral transcription factor TFIID consists of TATA boxā€“binding protein (TBP) and TBP-associated factors (TAFIIs), which together play a central role in both positive and negative regulation of transcription. The N-terminal region of the 230 kDa Drosophila TAFII (dTAFII230) binds directly to TBP and inhibits TBP binding to the TATA box. We report here the solution structure of the complex formed by dTAFII230 N-terminal region (residues 11ā€“77) and TBP. dTAFII23011ā€“77 comprises three Ī± helices and a Ī² hairpin, forming a core that occupies the concave DNA-binding surface of TBP. The TBP-binding surface of dTAFII230 markedly resembles the minor groove surface of the partially unwound TATA box in the TBPā€“TATA complex. This protein mimicry of the TATA element surface provides the structural basis of the mechanism by which dTAFII230 negatively controls the TATA boxā€“binding activity within the TFIID complex

    Human general transcription factor TFIIB: conformational variability and interaction with VP16 activation domain

    Get PDF
    ABSTRACT: Human TFIIB, an essential factor in transcription of protein-coding genes by RNA polymerase II, consists of an amino-terminal zinc binding domain (TFIIBn) connected by a linker of about 60 residues to a carboxy-terminal core domain (TFIIBc). The TFIIB core domain has two internally repeated motifs, each comprising five R-helices arranged as in the cyclin box. Compared to the crystal structure of TFIIBc in complex with TBP and a TATA-containing oligonucleotide, the NMR-derived solution structure of free TFIIBc is more compact, with a different repeat-repeat orientation and a significantly shorter first helix in the second repeat. Analysis of backbone 15 N relaxation parameters indicates the presence of relatively large amplitude, nanosecond time-scale motions in the TFIIBc interrepeat linker and structural fluctuations throughout the backbone. Interaction of TFIIBc with the acidic activation domain of VP16 or with TFIIBn induces 1 H-15 N chemical shift and line width changes concentrated in the first repeat, interrepeat linker and the first helix of the second repeat. These results suggest that TFIIB is somewhat pliable and that the conformation of the C-terminal core domain can be modulated by interaction with the N-terminal zinc binding domain. Furthermore, binding of the VP16 activation domain may promote TFIIBc conformations primed for binding to a TBP-DNA complex. TFIIB is an essential factor for initiation of transcription of protein-coding genes by RNA polymerase II (RNAPII), 1 one of the three eukaryotic nuclear RNA polymerases. Each of these polymerases requires a distinct set of auxiliary protein factors for specific initiation of RNA synthesis. In addition to TFIIB, the general initiation factors for RNAPII are TFIIA, TFIID [TATA binding protein (TBP) is a subunit of TFIID], TFIIE, TFIIF, and TFIIH (1-4). In the stepwise model for assembly of a transcription preinitiation complex (PIC) (1-3), TFIIB binds to the TBP (TFIID)-DNA complex and acts as a molecular bridge to RNAPII and the remaining initiation factors (5). TFIIB possesses sequencespecific DNA binding capacity for a DNA segment termed the IIB recognition element (BRE) immediately upstream of the TATA sequence of the adenovirus major late promoter Human TFIIB is a 316-residue polypeptid
    • ā€¦
    corecore