349 research outputs found

    Self-Assembly of Supramolecules Consisting of Octyl Gallate Hydrogen Bonded to Polyisoprene-block-poly(vinylpyridine) Diblock Copolymers

    Get PDF
    Synchrotron radiation was used to investigate the self-assembly in two comb-shaped supramolecules systems consisting of octyl gallate (OG), i.e., 1-octyl-3,4,5-trihydroxybenzoate, hydrogen bonded to the pyridine groups of polyisoprene-block-poly(vinylpyridine) diblock copolymers. In the case of the 1,2-polyisoprene-block-poly(4-vinylpyridine)(OG)x system, self-assembly was only observed for x ≥0.5, where x denotes the number of OG molecules per pyridine group. For x = 0.5, 0.75, 1.0, and 1.2 the system self-assembled in the form of hexagonally ordered cylinders of P4VP(OG) throughout the entire temperature range of 25-200 °C investigated. For the 1,4-polyisoprene-block-poly(2-vinylpyridine)(OG)x system, on the other hand, a considerably more complex phase behavior was found, including the formation of cubic, hexagonally ordered cylinders and lamellar morphologies. In this case several order-order transitions were observed as a function of temperature, including a lamellar to lamellar transition involving a collapse of the layer thickness. The absence of hydrogen bonding between the octyl gallate molecules and the pyridine groups at elevated temperatures is argued to be a key factor for many of the phenomena observed.

    Efficient light-induced phase transitions in halogen-bonded liquid crystals

    Get PDF
    Here, we present a new family of light-responsive, fluorinated supramolecular liquid crystals (LCs) showing efficient and reversible light-induced LC-to-isotropic phase transitions. Our materials design is based on fluorinated azobenzenes, where the fluorination serves to strengthen the noncovalent interaction with bond-accepting stilbazole molecules, and increase the lifetime of the cis-form of the azobenzene units. The halogen-bonded LCs were characterized by means of X-ray diffraction, hot-stage polarized optical microscopy, and differential scanning calorimetry. Simultaneous analysis of light-induced changes in birefringence, absorption, and optical scattering allowed us to estimate that <4% of the mesogenic units in the cis-form suffices to trigger the full LC-to-isotropic phase transition. We also report a light-induced and reversible crystal-to-isotropic phase transition, which has not been previously observed in supramolecular complexes. In addition to fundamental understanding of light-responsive supramolecular complexes, we foresee this study to be important in the development of bistable photonic devices and supramolecular actuators

    Magnetic nanocomposites at microwave frequencies

    Full text link
    Most conventional magnetic materials used in the electronic devices are ferrites, which are composed of micrometer-size grains. But ferrites have small saturation magnetization, therefore the performance at GHz frequencies is rather poor. That is why functionalized nanocomposites comprising magnetic nanoparticles (e.g. Fe, Co) with dimensions ranging from a few nm to 100 nm, and embedded in dielectric matrices (e.g. silicon oxide, aluminium oxide) have a significant potential for the electronics industry. When the size of the nanoparticles is smaller than the critical size for multidomain formation, these nanocomposites can be regarded as an ensemble of particles in single-domain states and the losses (due for example to eddy currents) are expected to be relatively small. Here we review the theory of magnetism in such materials, and we present a novel measurement method used for the characterization of the electromagnetic properties of composites with nanomagnetic insertions. We also present a few experimental results obtained on composites consisting of iron nanoparticles in a dielectric matrix.Comment: 20 pages, 10 figures, 5 table

    Surfactant induced mesomorphic behaviour of flexible polymers

    Get PDF
    Conditions for micro phase separated structures based on flexible polymers associated with surfactants have been investigated. Reasonably strong attractive interactions are required to oppose macro phase separation between polymer and surfactant. In order to obtain micro phase separation, additionally a sufficiently strong polar-nonpolar repulsion has to be present. Poly(4-vinyl pyridine), poly(2-vinyl pyridine) and polyamide 6 have been used as model polymers in this work. Associations based on protonation, metal coordination and hydrogen bonding are presented and shown to yield micro phase separation under suitable conditions. In the charged systems, the polar-nonpolar repulsion easily becomes large enough to render micro phase separated structures. In hydrogen bonded (i.e. noncharged) systems a more delicate balance can be achieved in which case an order-disorder transition takes place from a homogeneous state, exhibiting nonetheless a distinct SAXS peak due to characteristic block copolymer-like fluctuations, to a micro phase separated ordered state.</p

    Phase behavior and structure formation of hairy-rod supramolecules

    Get PDF
    Phase behavior and microstructure formation of rod and coil molecules, which can associate to form hairy-rod polymeric supramolecules, are addressed theoretically. Association induces considerable compatibility enhancement between the rod and coil molecules and various microscopically ordered structures can appear in the compatibility region. The equilibria between microphase-separated states, the coil-rich isotropic liquid and the rod-rich nematic are discussed in detail. In the regime where hairy-rod supramolecules with a high grafting density appear as a result of the association, three phase diagram types are possible depending on the value of the association energy. In the low grafting density regime only the lamellar microstructure is proven to be stable

    MESOMORPHIC STATE OF POLY(VINYLPYRIDINE)-DODECYLBENZENESULFONIC ACID COMPLEXES IN BULK AND IN XYLENE SOLUTION

    Get PDF
    Theoretically, lyotropic behavior of flexible polymers can be induced by associating the polymers with a large amount of long-tail surfactants leading to bottle-brush type conformations in suitable solvents. To address this and related questions, complexes of poly(2-vinylpyridine) (P2VP) and poly(4-vinylpyridine) (P4VP) with p-dodecylbenzenesulfonic acid (DBSA), characterized by FT-IR, were investigated in the bulk and in xylene, i.e., a good solvent for the alkyl side chains. At a 1:1 molar ratio of vinylpyridine monomer and DBS, the polymers are shown by FT-IR to be almost completely protonated. In the bulk, the complexes form mesomorphic layer structures which have been characterized by polarized optical microscopy and by both wide- and small-angle X-ray scattering. In the xylene solutions, birefringence indicating liquid crystallinity is observed for concentrations of the fully protonated P4VP-(DBSA)(1.0) complex of ca. 50% (w/w) and higher. In contrast, for P2VP(DBSA)(1.0), this is only observed at complex concentrations of ca. 70% (w/w) and higher. The mesomorphic behavior of P4VP(DBSA)(1.0) in xylene was further demonstrated by SAXS
    • …
    corecore