16,881 research outputs found

    Josephson Vortex States in Intermediate Fields

    Full text link
    Motivated by recent resistance data in high TcT_c superconductors in fields {\it parallel} to the CuO layers, we address two issues on the Josephson-vortex phase diagram, the appearances of structural transitions on the observed first order transition (FOT) curve in intermediate fields and of a lower critical point of the FOT line. It is found that some rotated pinned solids are more stable than the ordinary rhombic pinned solids with vacant interlayer spacings and that, due to the vertical portion in higher fields of the FOT line, the FOT tends to be destroyed by creating a lower critical point.Comment: 12 pages, 3 figures. To appear in J.Phys.Soc.Jpn. 71, No.2 (February, 2002

    AKSZ-BV Formalism and Courant Algebroid-induced Topological Field Theories

    Get PDF
    We give a detailed exposition of the Alexandrov-Kontsevich-Schwarz- Zaboronsky superfield formalism using the language of graded manifolds. As a main illustarting example, to every Courant algebroid structure we associate canonically a three-dimensional topological sigma-model. Using the AKSZ formalism, we construct the Batalin-Vilkovisky master action for the model.Comment: 13 pages, based on lectures at Rencontres mathematiques de Glanon 200

    Rapid consolidation of powdered materials by induction hot pressing

    Get PDF
    A rapid hot press system in which the heat is supplied by RF induction to rapidly consolidate thermoelectric materials is described. Use of RF induction heating enables rapid heating and consolidation of powdered materials over a wide temperature range. Such rapid consolidation in nanomaterials is typically performed by spark plasma sintering (SPS) which can be much more expensive. Details of the system design, instrumentation, and performance using a thermoelectric material as an example are reported. The Seebeck coefficient, electrical resistivity, and thermal diffusivity of thermoelectric PbTe material pressed at an optimized temperature and time in this system are shown to agree with material consolidated under typical consolidation parameters

    QP-Structures of Degree 3 and 4D Topological Field Theory

    Get PDF
    A A BV algebra and a QP-structure of degree 3 is formulated. A QP-structure of degree 3 gives rise to Lie algebroids up to homotopy and its algebraic and geometric structure is analyzed. A new algebroid is constructed, which derives a new topological field theory in 4 dimensions by the AKSZ construction.Comment: 17 pages, Some errors and typos have been correcte

    Glass Transition of the Monodisperse Gaussian Core Model

    Get PDF
    We numerically study dynamical properties of the one-component Gaussian Core Model in the supercooled states. We find that nucleation is suppressed as density increases. Concomitantly the system exhibits glassy slow dynamics characterized by the two-step and stretched exponential relaxation of the density correlation as well as drastic increase of the relaxation time. It is found that violation of the Stokes-Einstein relation is weaker and the non-Gaussian parameter is smaller than typical model glass formers, implying weaker dynamic heterogeneities. Besides, agreement of simulation data with the prediction of mode-coupling theory is exceptionally good, indicating that the nature of slow dynamics of this ultra-soft particle fluid is mean-field-like. This fact may be understood as the consequences of multiple overlaps of the constituent particles at high densities.Comment: 5 pages, 4 figure

    Agterberg, Zheng, and Mukherjee Reply

    Full text link
    Reply to Ikeda (arXiv:0712.3341).Comment: To appear in Phys. Rev. Let

    Thermodynamics and Structural Properties of the High Density Gaussian Core Model

    Get PDF
    We numerically study thermodynamic and structural properties of the one-component Gaussian core model (GCM) at very high densities. The solid-fluid phase boundary is carefully determined. We find that the density dependence of both the freezing and melting temperatures obey the asymptotic relation, logTf\log T_f, logTmρ2/3\log T_m \propto -\rho^{2/3}, where ρ\rho is the number density, which is consistent with Stillinger's conjecture. Thermodynamic quantities such as the energy and pressure and the structural functions such as the static structure factor are also investigated in the fluid phase for a wide range of temperature above the phase boundary. We compare the numerical results with the prediction of the liquid theory with the random phase approximation (RPA). At high temperatures, the results are in almost perfect agreement with RPA for a wide range of density, as it has been already shown in the previous studies. In the low temperature regime close to the phase boundary line, although RPA fails to describe the structure factors and the radial distribution functions at the length scales of the interparticle distance, it successfully predicts their behaviors at shorter length scales. RPA also predicts thermodynamic quantities such as the energy, pressure, and the temperature at which the thermal expansion coefficient becomes negative, almost perfectly. Striking ability of RPA to predict thermodynamic quantities even at high densities and low temperatures is understood in terms of the decoupling of the length scales which dictate thermodynamic quantities from the interparticle distance which dominates the peak structures of the static structure factor due to the softness of the Gaussian core potential.Comment: 10 pages, 10 figure

    Theoretical Description of Resistive Behavior near a Quantum Vortex-Glass Transition

    Full text link
    Resistive behaviors at nonzero temperatures (T > 0) reflecting a quantum vortex-glass (VG) transition (the so-called field-tuned superconductor-insulator transition at T=0) are studied based on a quantum Ginzburg-Landau (GL) action for a s-wave pairing case containing microscopic details. The ordinary dissipative dynamics of the pair-field is assumed on the basis of a consistency between the fluctuation conductance terms excluded from GL approach and an observed negative magnetoresistance. It is shown that the VG contribution, G_{vg}(B=B_{vg}, T \to 0),to 2D fluctuation conductance at the VG transition field B_{vg} depends on the strength of a repulsive-interaction between electrons and takes a universal value only in the ordinary dirty limit neglecting the electron-repulsion. Available resistivity data near B_{vg} are discussed based on our results, and extensions to the cases of a d-wave pairing and of 3D systems are briefly commented on.Comment: Explanation of data in strongly disordered case, as well as Fig.2 and 3, was renewed, and comments on recent publications were added. To appear in J.Phys.Soc. Jp

    Topological Field Theories and Geometry of Batalin-Vilkovisky Algebras

    Get PDF
    The algebraic and geometric structures of deformations are analyzed concerning topological field theories of Schwarz type by means of the Batalin-Vilkovisky formalism. Deformations of the Chern-Simons-BF theory in three dimensions induces the Courant algebroid structure on the target space as a sigma model. Deformations of BF theories in nn dimensions are also analyzed. Two dimensional deformed BF theory induces the Poisson structure and three dimensional deformed BF theory induces the Courant algebroid structure on the target space as a sigma model. The deformations of BF theories in nn dimensions induce the structures of Batalin-Vilkovisky algebras on the target space.Comment: 25 page
    corecore