721 research outputs found

    X-ray Diagnostics of Thermal Conditions of the Hot Plasmas in the Centaurus Cluster

    Full text link
    X-ray data of the Centaurus cluster, obtained with {\it XMM-Newton} for 45 ksec, were analyzed. Deprojected EPIC spectra from concentric thin shell regions were reproduced equally well by a single-phase plasma emission model, or by a two-phase model developed by {\it ASCA}, both incorporating cool (1.7--2.0 keV) and hot (4\sim 4 keV) plasma temperatures. However, EPIC spectra with higher statistics, accumulated over 3-dimentional thick shell regions, were reproduced better by the two-phase model than by the singe-phase one. Therefore, hot and cool plasma phases are inferred to co-exist in the cluster core region within 70\sim 70 kpc. The iron and silicon abundances of the plasma were reconfirmed to increase significantly towards the center, while that of oxygen was consistent with being radially constant. The implied non-solar abundance ratios explains away the previously reported excess X-ray absorption from the central region. Although an additional cool (0.7\sim 0.7 keV) emission was detected within 20\sim 20 kpc of the center, the RGS data gave tight upper limits on any emission with a tempeartures below 0.5\sim 0.5 keV. These results are compiled into a magnetosphere model, which interprets the cool phase as confined within closed magnetic loops anchored to the cD galaxy. When combined with so-called Rosner-Tucker-Vaiana mechanism which applies to solar coronae, this model can potentially explain basic properties of the cool phase, including its temperature and thermal stability.Comment: 53 pages, 11 figures, accepted for publication in Astrophysical Journa

    The abundance pattern of O, Mg, Si and Fe in the intracluster medium of the Centaurus cluster observed with XMM-Newton

    Get PDF
    The abundances of O, Mg, Si and Fe in the intracluster medium of the Centaurus cluster are derived. The Fe abundance has a negative radial gradient. In solar units, the Si abundance is close to the Fe abundance, while the O and Mg abundances are much smaller. The high Fe/O and Si/O ratio indicate that metal supply from supernovae Ia is important and supernovae Ia synthesize Si as well as Fe. Within 2', the O and Mg abundances are consistent with the stellar metallicity of the cD galaxy derived from the Mg2_2 index. This result indicates that the central gas is dominated by the gas from the cD galaxy. The observed abundance pattern of the Centaurus cluster resembles to those observed in center of other clusters and groups of galaxies. However, the central Fe abundance and the Si/Fe ratio are 40 % higher and 30% smaller than those of M 87, respectively. Since the accumulation timescale of the supernovae Ia is higher in the Centaurus cluster, these differences imply a time dependence of nucleosynthesis by supernovae Ia

    Implications of the central metal abundance peak in cooling core clusters of galaxies

    Full text link
    Recent XMM-Newton observations of clusters of galaxies have provided detailed information on the distribution of heavy elements in the central regions of clusters with cooling cores providing strong evidence that most of these metals come from recent SN type Ia. In this paper we compile information on the cumulative mass profiles of iron, the most important metallicity tracer. We find that long enrichment times (larger than 5 Gyr) are necessary to produce the central abundance peaks. Classical cooling flows, a strongly convective intracluster medium, and a complete metal mixing by cluster mergers would destroy the observed abundance peaks too rapidly. Thus the observations set strong constraints on cluster evolution models requiring that the cooling cores in clusters are preserved over very long times. We further conclude from the observations that the innermost part of the intracluster medium is most probably dominated by gas originating predominantly from stellar mass loss of the cD galaxy.Comment: 5 pages, 4 figures, A&A in press. Astronomy and Astrophysics Letters, in pres

    Detection of an X-Ray Hot Region in the Virgo Cluster of Galaxies with ASCA

    Get PDF
    Based on mapping observations with ASCA, an unusual hot region with a spatial extent of 1 square degree was discovered between M87 and M49 at a center coordinate of R. A. = 12h 27m 36s and Dec. = 9189^\circ18' (J2000). The X-ray emission from the region has a 2-10 keV flux of 1×10111 \times 10^{-11} ergs s1^{-1} cm2^{-2} and a temperature of kT4kT \gtrsim 4 keV, which is significantly higher than that in the surrounding medium of 2\sim 2 keV. The internal thermal energy in the hot region is estimated to be VnkT1060V n k T \sim 10^{60} ergs with a gas density of 104\sim 10^{-4} cm3^{-3}. A power-law spectrum with a photon index 1.72.31.7-2.3 is also allowed by the data. The hot region suggests there is an energy input due to a shock which is probably caused by the motion of the gas associated with M49, infalling toward the M87 cluster with a velocity 1000\gtrsim 1000 km s1^{-1}.Comment: 12 pages, 3 figures, accepted to ApJ

    X-ray Measurements of the Gravitational Potential Profile in the Central Region of the Abell 1060 Cluster of Galaxies

    Full text link
    X-ray spectral and imaging data from ASCA and ROSAT were used to measure the total mass profile in the central region of Abell 1060, a nearby and relatively poor cluster of galaxies. The ASCA X-ray spectra, after correcting for the spatial response of the X-ray telescope, show an isothermal distribution of the intra-cluster medium (ICM) within at least \sim 12' (or 160h701160h_{70}^{-1} kpc; H0=70h70H_0 = 70 h_{70} km s1^{-1}Mpc1^{-1}) in radius of the cluster center. The azimuthally averaged surface brightness profile from the ROSAT PSPC exhibits a central excess above an isothermal β\beta model. The ring-sorted ASCA GIS spectra and the radial surface brightness distribution from the ROSAT PSPC were simultaneously utilized to constrain the gravitational potential profile. Some analytic models of the total mass density profile were examined. The ICM density profile was also specified by analytic forms. The ICM temperature distribution was constrained to satisfy the hydrostatic equilibrium, and to be consistent with the data. Then, the total mass distribution was found to be described better by the universal dark halo profile proposed by Navarro, Frenk, and White (1996;1997) than by a King-type model with a flat density core. A profile with a central cusp together with a logarithmic radial slope of 1.5\sim 1.5 was also consistent with the data. Discussions are made concerning the estimated dark matter distribution around the cluster center.Comment: 32 pages. Accepted: ApJ 2000, 35 pages, Title was correcte

    The Structure of the X-Ray Emitting Gas in the Hydra-A Cluster of Galaxies

    Get PDF
    The temperature and abundance structure in the intracluster medium (ICM) of the Hydra-A cluster of galaxies is studied with ASCA and ROSAT. The effect of the large extended outskirts in the point-spread function of the X-Ray Telescope on ASCA is included in this analysis. In the X-ray brightness profile, the strong central excess above a single beta-model, identified in the Einstein and ROSAT data, is also found in the harder energy band (>4keV). A simultaneous fit of five annular spectra taken with the GIS instrument shows a radial distribution of the temperature and metal abundance. A significant central enhancement in the abundance distribution is found, while the temperature profile suggests that the ICM is approximately isothermal with the temperature of ~3.5keV. The ROSAT PSPC spectrum in the central 1'.5 region indicates a significantly lower temperature than the GIS result. A joint analysis of the GIS and PSPC data reveals that the spectra can be described by a two temperature model as well as by a cooling flow model. In both cases, the hot phase gas with the temperature of ~3.5keV occupies more than 90% of the total emission measure within 1'.5 from the cluster center. The estimated mass of the cooler (0.5-0.7keV) component is ~2-6 x 10^9 M_solar, which is comparable to the mass of hot halos seen in non-cD ellipticals. The cooling flow model gives the mass deposition rate of 60+-30 M_solar/yr, an order of magnitude lower than the previous estimation.Comment: 27 pages, 14 figures, AAS LATEX macros v4.0, to appear in The Astrophysical Journa

    A microscopic derivation of the quantum mechanical formal scattering cross section

    Full text link
    We prove that the empirical distribution of crossings of a "detector'' surface by scattered particles converges in appropriate limits to the scattering cross section computed by stationary scattering theory. Our result, which is based on Bohmian mechanics and the flux-across-surfaces theorem, is the first derivation of the cross section starting from first microscopic principles.Comment: 28 pages, v2: Typos corrected, layout improved, v3: Typos corrected. Accepted for publication in Comm. Math. Phy
    corecore