300 research outputs found

    Detection of an ultrabright submillimetre galaxy in the Subaru/XMM–Newton Deep Field using AzTEC/ASTE

    Get PDF
    We report on the detection of an extremely bright (∼37 mJy at 1100 μm and ∼91 mJy at 880 μm) submillimetre galaxy (SMG), AzTEC-ASTE-SXDF1100.001 (hereafter referred to as SXDF1100.001 or Orochi), discovered in the 1100 μm observations of the Subaru/XMM–Newton Deep Field using AzTEC on ASTE. Subsequent CARMA 1300-μm and SMA 880-μm observations successfully pinpoint the location of Orochi and suggest that it has two components, one extended [full width at half-maximum (FWHM) of ∼4 arcsec] and one compact (unresolved). Z-Spec on CSO has also been used to obtain a wide-band spectrum from 190 to 308 GHz, although no significant emission/absorption lines were found. The derived upper limit to the line-to-continuum flux ratio is 0.1–0.3 (2σ) across the Z-Spec band. Based on the analysis of the derived spectral energy distribution from optical to radio wavelengths of possible counterparts near the SMA/CARMA peak position, we suggest that Orochi is a lensed, optically dark SMG lying at z ∼ 3.4 behind a foreground, optically visible (but red) galaxy at z ∼ 1.4. The deduced apparent (i.e., no correction for magnification) infrared luminosity (L_(IR)) and star formation rate (SFR) are 6 × 10^(13) L_⊙ and 11 000 M_⊙ yr^(−1), respectively, assuming that the L_(IR) is dominated by star formation. These values suggest that Orochi will consume its gas reservoir within a short time-scale (3 × 10^7 yr), which is indeed comparable to those in extreme starbursts like the centres of local ultraluminous infrared galaxies (ULIRGs)

    AzTEC/ASTE 1.1-mm Survey of the AKARI Deep Field South: source catalogue and number counts

    Get PDF
    We present results of a 1.1 mm deep survey of the AKARI Deep Field South (ADF-S) with AzTEC mounted on the Atacama Submillimetre Telescope Experiment (ASTE). We obtained a map of 0.25 sq. deg area with an rms noise level of 0.32-0.71 mJy. This is one of the deepest and widest maps thus far at millimetre and submillimetre wavelengths. We uncovered 198 sources with a significance of 3.5-15.6 sigma, providing the largest catalog of 1.1 mm sources in a contiguous region. Most of the sources are not detected in the far-infrared bands of the AKARI satellite, suggesting that they are mostly at z ~ 1.5 given the detection limits. We constructed differential and cumulative number counts in the ADF-S, the Subaru/XMM Newton Deep Field (SXDF), and the SSA 22 field surveyed by AzTEC/ASTE, which provide currently the tightest constraints on the faint end. The integration of the best-fit number counts in the ADF-S find that the contribution of 1.1 mm sources with fluxes >=1 mJy to the cosmic infrared background (CIB) at 1.1 mm is 12-16%, suggesting that the large fraction of the CIB originates from faint sources of which the number counts are not yet constrained. We estimate the cosmic star-formation rate density contributed by 1.1 mm sources with >=1 mJy using the best-fit number counts in the ADF-S and find that it is lower by about a factor of 5-10 compared to those derived from UV/optically-selected galaxies at z ~ 2-3. The fraction of stellar mass of the present-day universe produced by 1.1 mm sources with >=1 mJy at z >= 1 is ~20%, calculated by the time integration of the star-formation rate density. If we consider the recycled fraction of >0.4, which is the fraction of materials forming stars returned to the interstellar medium, the fraction of stellar mass produced by 1.1 mm sources decrease to <~10%.Comment: 15 pages, 12 figure, accepted for publication in MNRA

    Very compact millimeter sizes for composite star-forming/AGN submillimeter galaxies

    Get PDF
    We report the study of far-IR sizes of submillimeter galaxies (SMGs) in relation to their dust-obscured star formation rate (SFR) and active galactic nuclei (AGN) presence, determined using mid-IR photometry. We determined the millimeter-wave (λobs=1100μ\lambda_{\rm obs}=1100 \mum) sizes of 69 ALMA-identified SMGs, selected with ≥10\geq10σ\sigma confidence on ALMA images (F1100μm=1.7F_{\rm 1100 \mu m}=1.7--7.4 mJy). We found that all the SMGs are located above an avoidance region in the millimeter size-flux plane, as expected by the Eddington limit for star formation. In order to understand what drives the different millimeter-wave sizes in SMGs, we investigated the relation between millimeter-wave size and AGN fraction for 25 of our SMGs at z=1z=1--3. We found that the SMGs for which the mid-IR emission is dominated by star formation or AGN have extended millimeter-sizes, with respective median Rc,e=1.6−0.21+0.34R_{\rm c,e} = 1.6^{+0.34}_{-0.21} and 1.5−0.24+0.93^{+0.93}_{-0.24} kpc. Instead, the SMGs for which the mid-IR emission corresponds to star-forming/AGN composites have more compact millimeter-wave sizes, with median Rc,e=1.0−0.20+0.20R_{\rm c,e}=1.0^{+0.20}_{-0.20} kpc. The relation between millimeter-wave size and AGN fraction suggests that this size may be related to the evolutionary stage of the SMG. The very compact sizes for composite star-forming/AGN systems could be explained by supermassive black holes growing rapidly during the SMG coalescing, star-formation phase.Comment: 9 pages, 4 figures, 1 table. Accepted for publication in ApJ Lette

    SXDF-ALMA 2 Arcmin^2 Deep Survey: Resolving and Characterizing the Infrared Extragalactic Background Light Down to 0.5 mJy

    Full text link
    We present a multi-wavelength analysis of five submillimeter sources (S_1.1mm = 0.54-2.02 mJy) that were detected during our 1.1-mm-deep continuum survey in the SXDF-UDS-CANDELS field (2 arcmin^2, 1sigma = 0.055 mJy beam^-1) using the Atacama Large Millimeter/submillimeter Array (ALMA). The two brightest sources correspond to a known single-dish (AzTEC) selected bright submillimeter galaxy (SMG), whereas the remaining three are faint SMGs newly uncovered by ALMA. If we exclude the two brightest sources, the contribution of the ALMA-detected faint SMGs to the infrared extragalactic background light is estimated to be ~ 4.1^{+5.4}_{-3.0} Jy deg^{-2}, which corresponds to ~ 16^{+22}_{-12}% of the infrared extragalactic background light. This suggests that their contribution to the infrared extragalactic background light is as large as that of bright SMGs. We identified multi-wavelength counterparts of the five ALMA sources. One of the sources (SXDF-ALMA3) is extremely faint in the optical to near-infrared region despite its infrared luminosity (L_IR ~ 1e12 L_sun or SFR ~ 100 M_sun yr^{-1}). By fitting the spectral energy distributions (SEDs) at the optical-to-near-infrared wavelengths of the remaining four ALMA sources, we obtained the photometric redshifts (z_photo) and stellar masses (M_*): z_photo ~ 1.3-2.5, M_* ~ (3.5-9.5)e10 M_sun. We also derived their star formation rates (SFRs) and specific SFRs (sSFRs) as ~ 30-200 M_sun yr^{-1} and ~ 0.8-2 Gyr^{-1}, respectively. These values imply that they are main-sequence star-forming galaxies.Comment: PASJ accepted, 15 pages, 6 figures, 2 table

    SXDF-ALMA 1.5 arcmin^2 deep survey. A compact dusty star-forming galaxy at z=2.5

    Get PDF
    We present first results from the SXDF-ALMA 1.5 arcmin^2 deep survey at 1.1 mm using Atacama Large Millimeter Array (ALMA). The map reaches a 1sigma depth of 55 uJy/beam and covers 12 Halpha-selected star-forming galaxies at z = 2.19 or z=2.53. We have detected continuum emission from three of our Halpha-selected sample, including one compact star-forming galaxy with high stellar surface density, NB2315-07. They are all red in the rest-frame optical and have stellar masses of log (M*/Msun)>10.9 whereas the other blue, main-sequence galaxies with log(M*/Msun)=10.0-10.8 are exceedingly faint, <290 uJy (2sigma upper limit). We also find the 1.1 mm-brightest galaxy, NB2315-02, to be associated with a compact (R_e=0.7+-0.1 kpc), dusty star-forming component. Given high gas fraction (44^{+20}_{-8}% or 37^{+25}_{-3}%) and high star formation rate surface density (126^{+27}_{-30} Msun yr^{-1}kpc^{-2}), the concentrated starburst can within less than 50^{+12}_{-11} Myr build up a stellar surface density matching that of massive compact galaxies at z~2, provided at least 19+-3% of the total gas is converted into stars in the galaxy centre. On the other hand, NB2315-07, which already has such a high stellar surface density core, shows a gas fraction (23+-8%) and is located in the lower envelope of the star formation main-sequence. This compact less star-forming galaxy is likely to be in an intermediate phase between compact dusty star-forming and quiescent galaxies.Comment: 6 pages, 4 figures, 1 table, accepted for publication in ApJ

    SXDF-UDS-CANDELS-ALMA 1.5 arcmin2^2 deep survey

    Full text link
    We have conducted 1.1 mm ALMA observations of a contiguous 105′′×50′′105'' \times 50'' or 1.5 arcmin2^2 window in the SXDF-UDS-CANDELS. We achieved a 5σ\sigma sensitivity of 0.28 mJy, providing a flat sensus of dusty star-forming galaxies with LIR∼6×1011L_{\rm IR} \sim6\times10^{11} L⊙L_\odot (for TdustT_{\rm dust} =40K) up to z∼10z\sim10 thanks to the negative K-correction at this wavelength. We detected 5 brightest sources (S/N>>6) and 18 low-significance sources (5>>S/N>>4; these may contain spurious detections, though). One of the 5 brightest ALMA sources (S1.1mm=0.84±0.09S_{\rm 1.1mm} = 0.84 \pm 0.09 mJy) is extremely faint in the WFC3 and VLT/HAWK-I images, demonstrating that a contiguous ALMA imaging survey is able to uncover a faint dust-obscured population that is invisible in deep optical/near-infrared surveys. We found a possible [CII]-line emitter at z=5.955z=5.955 or a low-zz CO emitting galaxy within the field, which may allow us to constrain the [CII] and/or the CO luminosity functions across the history of the universe.Comment: 4 pages, 2 figures, 1 table, to appear in the proceedings of IAU Symposium 319 "Galaxies at High Redshift and Their Evolution over Cosmic Time", eds. S. Kaviraj & H. Ferguso

    Initial Results from the Nobeyama Molecular Gas Observations of Distant Bright Galaxies

    Full text link
    We present initial results from the CO survey toward high redshift galaxies using the Nobeyama 45m telescope. Using the new wide bandwidth spectrometer equipped with a two-beam SIS receiver, we have robust new detections of three high redshift (z=1.6-3.4) submillimeter galaxies (SXDF 1100.001, SDP9, and SDP17), one tentative detection (SDSS J160705+533558), and one non-detection (COSMOS-AzTEC1). The galaxies observed during the commissioning phase are sources with known spectroscopic redshifts from previous optical or from wide-band submm spectroscopy. The derived molecular gas mass and line widths from Gaussian fits are ~10^11 Msun and 430-530 km/s, which are consistent with previous CO observations of distant submm galaxies and quasars. The spectrometer that allows a maximum of 32 GHz instantaneous bandwidth will provide new science capabilities at the Nobeyama 45m telescope, allowing us to determine redshifts of bright submm selected galaxies without any prior redshift information.Comment: 4 pages, 1 figure, PASJ Letter Accepte

    Obscured star formation in Lyα blobs at z = 3.1

    Get PDF
    We present results from the AzTEC/ASTE 1.1-mm imaging survey of 35 Lyα blobs (LABs) found in the SSA22 protocluster at z = 3.1. These 1.1-mm data reach an rms noise level of 0.7–1 mJy beam^(−1), making this the largest millimetre-wave survey of LABs to date. While one (or possibly two) out of 35 LABs might be detected at 3σ level, no significant (≥3.5σ) emission is found in any of individual 35 LABs. From this, we estimate 3σ upper limits on the far-infrared luminosity of L_FIR < 2 × 10^(12) L_⊙ (the dust temperature of 35 K and the emissivity index of 1.5 are assumed). Stacking analysis reveals that the 1.1-mm flux density averaged over the LABs is S_(1.1 mm) < 0.40 mJy (3σ), which places a constraint of LFIR < 4.5 × 10^(11) L_⊙. These data constrain the dust spectral energy distributions of the LABs more tightly than ever if their spectral indices at rest-frame wavelength of ≈ 240 μm are similar to those found in (ultra-)luminous infrared galaxies at 0.2 < z < 0.3. Our results suggest that LABs on average have little ultraluminous obscured star formation, in contrast to a long-believed picture that LABs undergo an intense episode of dusty star formation activities with star formation rates of ∼10^3  M_⊙ yr^(−1). Observations with the Atacama Large Millimeter/submillimeter Array are needed to directly study the obscured part of star formation activity in the LABs
    • …
    corecore