Abstract

We report the study of far-IR sizes of submillimeter galaxies (SMGs) in relation to their dust-obscured star formation rate (SFR) and active galactic nuclei (AGN) presence, determined using mid-IR photometry. We determined the millimeter-wave (λobs=1100μ\lambda_{\rm obs}=1100 \mum) sizes of 69 ALMA-identified SMGs, selected with 10\geq10σ\sigma confidence on ALMA images (F1100μm=1.7F_{\rm 1100 \mu m}=1.7--7.4 mJy). We found that all the SMGs are located above an avoidance region in the millimeter size-flux plane, as expected by the Eddington limit for star formation. In order to understand what drives the different millimeter-wave sizes in SMGs, we investigated the relation between millimeter-wave size and AGN fraction for 25 of our SMGs at z=1z=1--3. We found that the SMGs for which the mid-IR emission is dominated by star formation or AGN have extended millimeter-sizes, with respective median Rc,e=1.60.21+0.34R_{\rm c,e} = 1.6^{+0.34}_{-0.21} and 1.50.24+0.93^{+0.93}_{-0.24} kpc. Instead, the SMGs for which the mid-IR emission corresponds to star-forming/AGN composites have more compact millimeter-wave sizes, with median Rc,e=1.00.20+0.20R_{\rm c,e}=1.0^{+0.20}_{-0.20} kpc. The relation between millimeter-wave size and AGN fraction suggests that this size may be related to the evolutionary stage of the SMG. The very compact sizes for composite star-forming/AGN systems could be explained by supermassive black holes growing rapidly during the SMG coalescing, star-formation phase.Comment: 9 pages, 4 figures, 1 table. Accepted for publication in ApJ Lette

    Similar works

    Available Versions

    Last time updated on 06/12/2017