11 research outputs found

    Heads or tails? Structural events and molecular mechanisms that promote mammalian sperm acrosomal exocytosis and motility

    Get PDF
    Sperm structure has evolved to be very compact and compartmentalized to enable the motor (the flagellum) to transport the nuclear cargo (the head) to the egg. Furthermore, sperm do not exhibit progressive motility and are not capable of undergoing acrosomal exocytosis immediately following their release into the lumen of the seminiferous tubules, the site of spermatogenesis in the testis. These cells require maturation in the epididymis and female reproductive tract before they become competent for fertilization. Here we review aspects of the structural and molecular mechanisms that promote forward motility, hyperactivated motility, and acrosomal exocytosis. As a result, we favor a model articulated by others that the flagellum senses external signals and communicates with the head by second messengers to affect sperm functions such as acrosomal exocytosis. We hope this conceptual framework will serve to stimulate thinking and experimental investigations concerning the various steps of activating a sperm from a quiescent state to a gamete that is fully competent and committed to fertilization. The three themes of compartmentalization, competence, and commitment are key to an understanding of the molecular mechanisms of sperm activation. Comprehending these processes will have a considerable impact on the management of fertility problems, the development of contraceptive methods, and, potentially, elucidation of analogous processes in other cell systems.Fil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); Argentina. University of Pennsylvania; Estados UnidosFil: Ijiri, Takashi W.. University of Pennsylvania; Estados UnidosFil: Cao, Wenlei. University of Pennsylvania; Estados UnidosFil: Merdiushev, Tanya. University of Pennsylvania; Estados UnidosFil: Aghajanian, Haig K.. University of Pennsylvania; Estados UnidosFil: Gerton, George L.. University of Pennsylvania; Estados Unido

    A Kinematic Approach for Efficient and Robust Simulation of the Cardiac Beating Motion

    Get PDF
    Computer simulation techniques for cardiac beating motions potentially have many applications and a broad audience. However, most existing methods require enormous computational costs and often show unstable behavior for extreme parameter sets, which interrupts smooth simulation study and make it difficult to apply them to interactive applications. To address this issue, we present an efficient and robust framework for simulating the cardiac beating motion. The global cardiac motion is generated by the accumulation of local myocardial fiber contractions. We compute such local-to-global deformations using a kinematic approach; we divide a heart mesh model into overlapping local regions, contract them independently according to fiber orientation, and compute a global shape that satisfies contracted shapes of all local regions as much as possible. A comparison between our method and a physics-based method showed that our method can generate motion very close to that of a physics-based simulation. Our kinematic method has high controllability; the simulated ventricle-wall-contraction speed can be easily adjusted to that of a real heart by controlling local contraction timing. We demonstrate that our method achieves a highly realistic beating motion of a whole heart in real time on a consumer-level computer. Our method provides an important step to bridge a gap between cardiac simulations and interactive applications

    Protein-Tyrosine Kinase Signaling in the Biological Functions Associated with Sperm

    Get PDF
    In sexual reproduction, two gamete cells (i.e., egg and sperm) fuse (fertilization) to create a newborn with a genetic identity distinct from those of the parents. In the course of these developmental processes, a variety of signal transduction events occur simultaneously in each of the two gametes, as well as in the fertilized egg/zygote/early embryo. In particular, a growing body of knowledge suggests that the tyrosine kinase Src and/or other protein-tyrosine kinases are important elements that facilitate successful implementation of the aforementioned processes in many animal species. In this paper, we summarize recent findings on the roles of protein-tyrosine phosphorylation in many sperm-related processes (from spermatogenesis to epididymal maturation, capacitation, acrosomal exocytosis, and fertilization)

    DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes

    No full text
    Silencing of transposable elements occurs during fetal gametogenesis in males via de novo DNA methylation of their regulatory regions. The loss of MILI (miwi-like) and MIWI2 (mouse piwi 2), two mouse homologs of Drosophila Piwi, activates retrotransposon gene expression by impairing DNA methylation in the regulatory regions of the retrotransposons. However, as it is unclear whether the defective DNA methylation in the mutants is due to the impairment of de novo DNA methylation, we analyze DNA methylation and Piwi-interacting small RNA (piRNA) expression in wild-type, MILI-null, and MIWI2-null male fetal germ cells. We reveal that defective DNA methylation of the regulatory regions of the Line-1 (long interspersed nuclear elements) and IAP (intracisternal A particle) retrotransposons in the MILI-null and MIWI2-null male germ cells takes place at the level of de novo methylation. Comprehensive analysis shows that the piRNAs of fetal germ cells are distinct from those previously identified in neonatal and adult germ cells. The expression of piRNAs is reduced under MILI- and MIWI2-null conditions in fetal germ cells, although the extent of the reduction differs significantly between the two mutants. Our data strongly suggest that MILI and MIWI2 play essential roles in establishing de novo DNA methylation of retrotransposons in fetal male germ cells
    corecore