10 research outputs found

    2D Particle Simulation of Liver Cell Proliferation with Angiogenesis - Hepatic Lobule Formation

    Get PDF
    The liver has the ability to reform and regenerate in our body. However, the mechanisms of reformation or regeneration of the liver have not been elucidated. In this study, we propose an analysis model using a Particle Model to elucidate the mechanism of liver formation. The object of analysis is a hepatic lobule, which is the basic component of the liver. First, a 2-dimensional cell proliferation around one blood vessel was modeled. Second, angiogenesis was added and considered. And finally, the model was applied to the hepatic lobule and the 2D formation of the hepatic lobule was revealed. We used experimentally derived parameters such as diffusivity, oxygen concentration, and oxygen consumption of a cell. The model will be expected to facilitate in developing tissue-engineered liver using regenerative medicine technology.2nd Conference on Advances in Prevention and Treatment of Cancer (CAPTC 2016), March 18-20, 2016, Los Angeles, US

    A novel transgenic chimaeric mouse system for the rapid functional evaluation of genes encoding secreted proteins

    Get PDF
    A major challenge of the post-genomic era is the functional characterization of anonymous open reading frames (ORFs) identified by the Human Genome Project. In this context, there is a strong requirement for the development of technologies that enhance our ability to analyze gene functions at the level of the whole organism. Here, we describe a rapid and efficient procedure to generate transgenic chimaeric mice that continuously secrete a foreign protein into the systemic circulation. The transgene units were inserted into the genomic site adjacent to the endogenous immunoglobulin (Ig) κ locus by homologous recombination, using a modified mouse embryonic stem (ES) cell line that exhibits a high frequency of homologous recombination at the Igκ region. The resultant ES clones were injected into embryos derived from a B-cell-deficient host strain, thus producing chimaerism-independent, B-cell-specific transgene expression. This feature of the system eliminates the time-consuming breeding typically implemented in standard transgenic strategies and allows for evaluating the effect of ectopic transgene expression directly in the resulting chimaeric mice. To demonstrate the utility of this system we showed high-level protein expression in the sera and severe phenotypes in human EPO (hEPO) and murine thrombopoietin (mTPO) transgenic chimaeras

    Intrathecal Injection of Mesenchymal Stromal Cell Cultured on 3D Fiber Ameliorates Multiple Organ Damage in Murine Lupus

    No full text
    Up to 60% of patients with systemic lupus erythematosus (SLE) experience autonomic symptom. Sympathetic nervous system damage can cause dysfunction of the bone marrow that activates inflammatory cells, potentially causing multiple organ damage. We hypothesized that sympathetic nervous system damage would induce bone marrow dysfunction with multiple organ damage in SLE, and that multiple organ damage could be improved by therapy targeting the nervous system. Here, we showed that damage to autonomic nerves and Schwann cells occurred in the bone marrow and central nervous system of SLE model mice. A neurotoxic drug increased mortality and induced severe neuropathy and multiple organ damage, while a neuroprotective drug prevented multiple organ damage. The administration of bone marrow-derived mesenchymal stromal cells (BMSCs) cultured on a 3-dimensional fiber scaffold improved bone marrow neuropathy, skin lesions, kidney function, and mortality. Our results reveal that bone marrow neuropathy influence multiple organ damage associated with SLE, and improvement of bone marrow neuropathy by intrathecal injection of BMSC may be a target for SLE multiple-organ damage

    Fisetin reduces the senescent tubular epithelial cell burden and also inhibits proliferative fibroblasts in murine lupus nephritis

    No full text
    Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease characterized by the involvement of multiple organs. Lupus nephritis (LN) is a major risk factor for overall morbidity and mortality in SLE patients. Hence, designing effective drugs is pivotal for treating individuals with LN. Fisetin plays a senolytic role by specifically eliminating senescent cells, inhibiting cell proliferation, and exerting anti-inflammatory, anti-oxidant, and anti-tumorigenic effects. However, limited research has been conducted on the utility and therapeutic mechanisms of fisetin in chronic inflammation. Similarly, whether the effects of fisetin depend on cell type remains unclear. In this study, we found that LN-prone MRL/lpr mice demonstrated accumulation of Ki-67-positive myofibroblasts and p15(INK4B)-positive senescent tubular epithelial cells (TECs) that highly expressed transforming growth factor beta (TGF-beta). TGF-beta stimulation induced senescence of NRK-52E renal TECs and proliferation of NRK-49F renal fibroblasts, suggesting that TGF-beta promotes senescence and proliferation in a cell type-dependent manner, which is inhibited by fisetin treatment in vitro. Furthermore, fisetin treatment in vivo reduced the number of senescent TECs and myofibroblasts, which attenuated kidney fibrosis, reduced senescence-associated secretory phenotype (SASP) expression, and increased TEC proliferation. These data suggest that the effects of fisetin vary depending on the cell type and may have therapeutic effects in complex and diverse LN pathologies

    Senescence-associated secretory phenotypes in mesenchymal cells contribute to cytotoxic immune response in oral lichen planus

    No full text
    Abstract Oral lichen planus is a chronic inflammatory condition that adversely affects the oral mucosa; however, its etiology remains elusive. Consequently, therapeutic interventions for oral lichen planus are limited to symptomatic management. This study provides evidence of the accumulation of senescent mesenchymal cells, CD8 + T cells, and natural killer cells in patients with oral lichen planus. We profiled the patients’ tissues using the National Center for Biotechnology Information Gene Expression Omnibus database and found that senescence-related genes were upregulated in these tissues by gene set enrichment analysis. Immunohistochemical analysis showed increased senescent mesenchymal cells in the subepithelial layer of patients with oral lichen planus. Single-cell RNA-seq data retrieved from the Gene Expression Omnibus database of patients with oral lichen planus revealed that mesenchymal cells were marked by the upregulation of senescence-related genes. Cell-cell communication analysis using CellChat showed that senescent mesenchymal cells significantly influenced CD8 + T cells and natural killer cells via CXCL12-CXCR4 signaling, which is known to activate and recruit CD8 + T cells and NK cells. Finally, in vitro assays demonstrated that the secretion of senescence-associated factors from mesenchymal cells stimulated the activation of T cells and natural killer cells and promoted epithelial cell senescence and cytotoxicity. These findings suggest that the accumulation of mesenchymal cells with senescence-associated secretory phenotype may be a key driver of oral lichen planus pathogenesis

    Total RNA samples prepared from 10 different tissues of 4-week-old hEPO/ΔRS and control ΔRS chimaeras were subjected to RT–PCR analysis using hEPO (35 cycles) and Cκ (35 cycles) specific primer pairs

    No full text
    <p><b>Copyright information:</b></p><p>Taken from "A novel transgenic chimaeric mouse system for the rapid functional evaluation of genes encoding secreted proteins"</p><p>Nucleic Acids Research 2005;33(9):e85-e85.</p><p>Published online 24 May 2005</p><p>PMCID:PMC1140086.</p><p>© The Author 2005. Published by Oxford University Press. All rights reserved</p> The sizes of resulting PCR products in all experiments were consistent with the expected sizes predicted from reported cDNA sequences. Murine GAPDH (25 cycles) was used as a control
    corecore