150 research outputs found

    Effect of bovine milk fat-based infant formulae on microbiota, metabolites and stool parameters in healthy term infants in a randomized, crossover, placebo-controlled trial

    Get PDF
    Background: Natural enrichment of sn-2 palmitate content of infant formulae by using bovine milk fat is known to reduce formation of faecal fatty acid soaps and to improve stool consistency, but effects on gut microbiota composition are unknown. The purpose of this study was to test the influence of milk fat-based formula high in sn-2 palmitate on the infants’ gut microbiota composition and to confirm the beneficial effects of the formula on formation of faecal fatty acid soaps and stool consistency. Methods: Twenty-two healthy term, formula-fed infants were enrolled in a single-blinded randomized, crossover, placebo-controlled trial. After a 2-week run-in period, infants received either a 50% milk fat-based formula containing 39% sn-2 palmitate (MF) or a vegetable fat-based formula (VF) containing 10% sn-2 palmitate in a 2 × 2-week crossover design. Faecal microbiota composition was the primary outcome of the study. Other outcomes included faecal fatty acid soap excretion, calcium excretion, gut comfort parameters and faecal metabolites. Results: Microbiota analysis showed that bifidobacteria dominated the gut microbiota of most infants. Neither alpha- nor beta-diversity was significantly influenced by the intervention. Also, abundance of metabolic pathways was independent of the intervention. The MF formula resulted in significantly lower faecal levels of palmitic acid soap (p = 0.0002) and total fatty acid soaps (p = 0.0001) than the VF formula. Additionally, calcium excretion and palmitic acid concentration were significantly (p = 0.0335) lower in stool samples after MF intervention. Furthermore, a significant physiological effect on softer stools was observed in the MF intervention compared to the VF intervention (p = 0.02). Of the 870 measured faecal metabolites, 190 were significantly different after MF and VF intervention (FDR corrected p &lt; 0.05). Most of these were found at higher levels after MF intervention, potentially indicative of the complex structure of milk fat. Metabolites with more than twofold change between interventions were mostly lipid-derived and included several milk fat-specific fatty acids. Conclusions: Replacing part of the vegetable fat in infant formula with bovine milk fat with high sn-2 palmitate levels did not change the microbiota composition, although a reduction in faecal palmitate soaps, total fatty acid soaps and calcium excretion while improving stool consistency in the MF intervention was confirmed. In addition, 190 faecal metabolites were significantly different, many related to the fat source. Trial registration: Netherlands Trial Registry Identifier: NL7815 19/06/2019.</p

    Colony-Stimulating Factor 1 Receptor (CSF1R) Regulates Microglia Density and Distribution, but Not Microglia Differentiation In Vivo

    Get PDF
    Microglia are brain-resident macrophages with trophic and phagocytic functions. Dominant loss-of-function mutations in a key microglia regulator, colony-stimulating factor 1 receptor (CSF1R), cause adult-onset leukoencephalopathy with axonal spheroids and pigmented glia (ALSP), a progressive white matter disorder. Because it remains unclear precisely how CSF1R mutations affect microglia, we generated an allelic series of csf1r mutants in zebrafish to identify csf1r-dependent microglia changes. We found that csf1r mutations led to aberrant microglia density and distribution and regional loss of microglia. The remaining microglia still had a microglia-specific gene expression signature, indicating that they had differentiated normally. Strikingly, we also observed lower microglia numbers and widespread microglia depletion in postmortem brain tissue of ALSP patients. Both in zebrafish and in human disease, local microglia loss also presented in regions without obvious pathology. Together, this implies that CSF1R mainly regulates microglia density and that early loss of microglia may contribute to ALSP pathogenesis. Oosterhof et al. show that colony-stimulating factor 1 receptor (CSF1R) primarily regulates microglia density and not their normal differentiation. In addition, they find widespread depletion of microglia in CSF1R-haploinsufficient zebrafish and leukodystrophy patients, also in the absence of pathology, indicating that microglia depletion may contribute to loss of white matter

    The ubiquitin-conjugating enzyme HR6B is required for maintenance of X chromosome silencing in mouse spermatocytes and spermatids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The ubiquitin-conjugating enzyme HR6B is required for spermatogenesis in mouse. Loss of HR6B results in aberrant histone modification patterns on the trancriptionally silenced X and Y chromosomes (XY body) and on centromeric chromatin in meiotic prophase. We studied the relationship between these chromatin modifications and their effects on global gene expression patterns, in spermatocytes and spermatids.</p> <p>Results</p> <p>HR6B is enriched on the XY body and on centromeric regions in pachytene spermatocytes. Global gene expression analyses revealed that spermatid-specific single- and multicopy X-linked genes are prematurely expressed in <it>Hr6b </it>knockout spermatocytes. Very few other differences in gene expression were observed in these cells, except for upregulation of major satellite repeat transcription. In contrast, in <it>Hr6b </it>knockout spermatids, 7298 genes were differentially expressed; 65% of these genes was downregulated, but we observed a global upregulation of gene transcription from the X chromosome. In wild type spermatids, approximately 20% of the single-copy X-linked genes reach an average expression level that is similar to the average expression from autosomes.</p> <p>Conclusions</p> <p>Spermatids maintain an enrichment of repressive chromatin marks on the X chromosome, originating from meiotic prophase, but this does not interfere with transcription of the single-copy X-linked genes that are reactivated or specifically activated in spermatids. HR6B represses major satellite repeat transcription in spermatocytes, and functions in the maintenance of X chromosome silencing in spermatocytes and spermatids. It is discussed that these functions involve modification of chromatin structure, possibly including H2B ubiquitylation.</p

    3D chromatin reprogramming primes human memory T<sub>H</sub>2 cells for rapid recall and pathogenic dysfunction

    Get PDF
    Memory T cells provide long-lasting defense responses through their ability to rapidly reactivate, but how they efficiently "recall" an inflammatory transcriptional program remains unclear. Here, we show that human CD4+ memory T helper 2 (TH2) cells carry a chromatin landscape synergistically reprogrammed at both one-dimensional (1D) and 3D levels to accommodate recall responses, which is absent in naive T cells. In memory TH2 cells, recall genes were epigenetically primed through the maintenance of transcription-permissive chromatin at distal (super)enhancers organized in long-range 3D chromatin hubs. Precise transcriptional control of key recall genes occurred inside dedicated topologically associating domains ("memory TADs"), in which activation-associated promoter-enhancer interactions were preformed and exploited by AP-1 transcription factors to promote rapid transcriptional induction. Resting memory TH2 cells from patients with asthma showed premature activation of primed recall circuits, linking aberrant transcriptional control of recall responses to chronic inflammation. Together, our results implicate stable multiscale reprogramming of chromatin organization as a key mechanism underlying immunological memory and dysfunction in T cells.</p

    Genomes of Ellobius species provide insight into the evolutionary dynamics of mammalian sex chromosomes

    Get PDF
    The X and Y sex chromosomes of placental mammals show hallmarks of a tumultuous evolutionary past. The X Chromosome has a rich and conserved gene content, while the Y Chromosome has lost most of its genes. In the Transcaucasian mole vole Ellobius lutescens, the Y Chromosome including Sry has been lost, and both females and males have a 17,X diploid karyotype. Similarly, the closely related Ellobius talpinus, has a 54,XX karyotype in both females and males. Here, we report the sequencing and assembly of the E. lutescens and E. talpinus genomes. The results indicate that the loss of the Y Chromosome in E. lutescens and E. talpinus occurred in two independent events. Four functional homologs of mouse Y-Chromosomal genes were detected in both female and male E. lutescens, of which three were also detected in the E. talpinus genome. One of these is Eif2s3y, known as the only Y-derived gene that is crucial for successful male meiosis. Female and male E. lutescens can carry one and the same X Chromosome with a largely conserved gene content, including all genes known to function in X Chromosome inactivation. The availability of the genomes of these mole vole species provides unique models to study the dynamics of sex chromosome evolution

    Control of developmentally primed erythroid genes by combinatorial co-repressor actions

    Get PDF
    How transcription factors (TFs) cooperate within large protein complexes to allow rapid modulation of gene expression during development is still largely unknown. Here we show that the key haematopoietic LIM-domain-binding protein-1 (LDB1) TF complex contains several activator and repressor components that together maintain an erythroid-specific gene expression programme primed for rapid activation until differentiation is induced. A combination of proteomics, functional genomics and in vivo studies presented here identifies known and novel co-repressors, most notably the ETO2 and IRF2BP2 proteins, involved in maintaining this primed state. The ETO2-IRF2BP2 axis, interacting with the NCOR1/SMRT co-repressor complex, suppresses the expression of the vast majority of archetypical erythroid genes and pathways until its decommissioning at the onset of terminal erythroid differentiation. Our experiments demonstrate that multimeric regulatory complexes feature a dynamic interplay between activating and repressing components that determines lineage-specific gene expression and cellular differentiation

    Targeted Genomic Sequencing of TSC1 and TSC2 Reveals Causal Variants in Individuals for Whom Previous Genetic Testing for Tuberous Sclerosis Complex Was Normal

    Get PDF
    Tuberous sclerosis complex (TSC) is caused by inactivating variants in TSC1 and TSC2. Somatic mosaicism, as well as the size and complexity of the TSC1 and TSC2 loci, makes variant identification challenging. Indeed, in some individuals with a clinical diagnosis of TSC, diagnostic testing fails to identify an inactivating variant. To improve TSC1 and TSC2 variant detection, we screened the TSC1 and TSC2 genomic regions using targeted HaloPlex custom capture and next-generation sequencing (NGS) in genomic DNA isolated from peripheral blood of individuals with definite, possible or suspected TSC in whom no disease-associated variant had been identified by previous diagnostic genetic testing. We obtained &gt;95% target region coverage at a read depth of 20 and &gt;50% coverage at a read depth of 300 and identified inactivating TSC1 or TSC2 variants in 83/155 individuals (54%); 65/113 (58%) with clinically definite TSC and 18/42 (43%) with possible or suspected TSC. These included 19 individuals with deep intronic variants and 54 likely cases of mosaicism (variant allele frequency 1-28%; median 7%). In 13 cases (8%), we identified a variant of uncertain significance (VUS). Targeted genomic NGS of TSC1 and TSC2 increases the yield of inactivating variants found in individuals with suspected TSC.</p

    Butyrate inhibits human mast cell activation via epigenetic regulation of FcεRI-mediated signaling

    Get PDF
    Background: Short-chain fatty acids (SCFAs) are fermented dietary components that regulate immune responses, promote colonic health, and suppress mast cell–mediated diseases. However, the effects of SCFAs on human mast cell function, including the underlying mechanisms, remain unclear. Here, we investigated the effects of the SCFAs (acetate, propionate, and butyrate) on mast cell–mediated pathology and human mast cell activation, including the molecular mechanisms involved. Method: Precision-cut lung slices (PCLS) of allergen-exposed guinea pigs were used to assess the effects of butyrate on allergic airway contraction. Human and mouse mast cells were co-cultured with SCFAs and assessed for degranulation after IgE- or non–IgE-mediated stimulation. The underlying mechanisms involved were investigated using knockout mice, small molecule inhibitors/agonists, and genomics assays. Results: Butyrate treatment inhibited allergen-induced histamine release and airway contraction in guinea pig PCLS. Propionate and butyrate, but not acetate, inhibited IgE- and non–IgE-mediated human or mouse mast cell degranulation in a concentration-dependent manner. Notably, these effects were independent of the stimulation of SCFA receptors GPR41, GPR43, or PPAR, but instead were associated with inhibition of histone deacetylases. Transcriptome analyses revealed butyrate-induced downregulation of the tyrosine kinases BTK, SYK, and LAT, critical transducers of FcεRI-mediated signals that are essential for mast cell activation. Epigenome analyses indicated that butyrate redistributed global histone acetylation in human mast cells, including significantly decreased acetylation at the BTK, SYK, and LAT promoter regions. Conclusion: Known health benefits of SCFAs in allergic disease can, at least in part, be explained by epigenetic suppression of human mast cell activation

    Whole-Genome Linkage Scan Combined With Exome Sequencing Identifies Novel Candidate Genes for Carotid Intima-Media Thickness

    Get PDF
    Carotid intima-media thickness (cIMT) is an established heritable marker for subclinical atherosclerosis. In this study, we aim to identify rare variants with large effects driving differences in cIMT by performing genome-wide linkage analysis of individuals in the extremes of cIMT trait distribution (&gt;90th percentile) in a large family-based study from a genetically isolated population in the Netherlands. Linked regions were subsequently explored by fine-mapping using exome sequencing. We observed significant evidence of linkage on chromosomes 2p16.3 [rs1017418, heterogeneity LOD (HLOD) = 3.35], 19q13.43 (rs3499, HLOD = 9.09), 20p13 (rs1434789, HLOD = 4.10), and 21q22.12 (rs2834949, HLOD = 3.59). Fine-mapping using exome sequencing data identified a non-coding variant (rs62165235) in PNPT1 gene under the linkage peak at chromosome 2 that is likely to have a regulatory function. The variant was associated with quantitative cIMT in the family-based study population (effect = 0.27, p-value = 0.013). Furthermore, we identified several genes under the linkage peak at chromosome 21 highly expressed in tissues relevant for atherosclerosis. To conclude, our linkage analysis identified four genomic regions significantly linked to cIMT. Further analyses are needed to demonstrate involvement of identified candidate genes in development of atherosclerosis
    • …
    corecore