38 research outputs found

    2種のβ-キシロシダーゼによるキシロースの縮合反応の比較

    Get PDF
    The kinetic characterization of two fungal (Aspergillus niger and Malbranchea pulchella) β-xylosidases reveals "product specificity" in the condensation reaction of xylose. The specificity of xylodisaccharide production in the condensation reaction yields more variation for the M. pulchella enzyme than for the A. niger one. Of the products, β-1,4-xylodisac-charide is produced most in the reaction of both enzymes. A simple mechanism with forward (condensation) and reverse (hydrolysis) reactions is assumed and the rate constants for the forward reactions of the respective β-linked xylodisaccharides are experimentally determined as well as the equilibrium constants. The rate constants for the reverse reactions are estimated from these equilibrium and rate constants, and found to have smaller values than those observed in the initial velocities of the hydrolysis, inferring inhibition of the reaction with a high concentration of xylose. Comparison of the actual time course in xylodisaccharide production with that obtained by a computer simulation for this simple mechanism implies that the reaction mechanism of the M. pulchella enzyme comprises the condensation and hydrolysis reactions, while the mechanism of the A. niger enzyme further includes the reaction producing xylotrisaccharide

    Cellular and Molecular Networking Within the Ecosystem of Cancer Cell Communication via Tunneling Nanotubes

    Get PDF
    Intercellular communication is vital to the ecosystem of cancer cell organization and invasion. Identification of key cellular cargo and their varied modes of transport are important considerations in understanding the basic mechanisms of cancer cell growth. Gap junctions, exosomes, and apoptotic bodies play key roles as physical modalities in mediating intercellular transport. Tunneling nanotubes (TNTs)—narrow actin-based cytoplasmic extensions—are unique structures that facilitate direct, long distance cell-to-cell transport of cargo, including microRNAs, mitochondria, and a variety of other sub cellular components. The transport of cargo via TNTs occurs between malignant and stromal cells and can lead to changes in gene regulation that propagate the cancer phenotype. More notably, the transfer of these varied molecules almost invariably plays a critical role in the communication between cancer cells themselves in an effort to resist death by chemotherapy and promote the growth and metastases of the primary oncogenic cell. The more traditional definition of “Systems Biology” is the computational and mathematical modeling of complex biological systems. The concept, however, is now used more widely in biology for a variety of contexts, including interdisciplinary fields of study that focus on complex interactions within biological systems and how these interactions give rise to the function and behavior of such systems. In fact, it is imperative to understand and reconstruct components in their native context rather than examining them separately. The long-term objective of evaluating cancer ecosystems in their proper context is to better diagnose, classify, and more accurately predict the outcome of cancer treatment. Communication is essential for the advancement and evolution of the tumor ecosystem. This interplay results in cancer progression. As key mediators of intercellular communication within the tumor ecosystem, TNTs are the central topic of this article

    Stressing the Ubiquitin-Proteasome System without 20S Proteolytic Inhibition Selectively Kills Cervical Cancer Cells

    Get PDF
    Cervical cancer cells exhibit an increased requirement for ubiquitin-dependent protein degradation associated with an elevated metabolic turnover rate, and for specific signaling pathways, notably HPV E6-targeted degradation of p53 and PDZ proteins. Natural compounds with antioxidant properties including flavonoids and triterpenoids hold promise as anticancer agents by interfering with ubiquitin-dependent protein degradation. An increasing body of evidence indicates that their α-β unsaturated carbonyl system is the molecular determinant for inhibition of ubiquitin-mediated protein degradation up-stream of the catalytic sites of the 20S proteasome. Herein we report the identification and characterization of a new class of chalcone-based, potent and cell permeable chemical inhibitors of ubiquitin-dependent protein degradation, and a lead compound RAMB1. RAMB1 inhibits ubiquitin-dependent protein degradation without compromising the catalytic activities of the 20S proteasome, a mechanism distinct from that of Bortezomib. Treatment of cervical cancer cells with RAMB1 triggers unfolded protein responses, including aggresome formation and Hsp90 stabilization, and increases p53 steady state levels. RAMB1 treatment results in activation of lysosomal-dependent degradation pathways as a mechanism to compensate for increasing levels of poly-ubiquitin enriched toxic aggregates. Importantly, RAMB1 synergistically triggers cell death of cervical cancer cells when combined with the lysosome inhibitor Chloroquine

    Simultaneous inhibition of deubiquitinating enzymes (DUBs) and autophagy synergistically kills breast cancer cells

    Get PDF
    Breast cancer is one of the leading causes of cancer death among women in the United States. Patients expressing the estrogen and progesterone receptor (ER and PR) and human epidermal growth factor 2 (HER-2) tumor markers have favorable prognosis and efficacious therapeutic options. In contrast, tumors that are negative for these markers (triple-negative) have a disproportionate share of morbidity and mortality due to lack of a validated molecular target. Deubiquitinating enzymes (DUBs) are a critical component of ubiquitin-proteasome-system degradation and have been shown to be differentially expressed and activated in a number of cancers, including breast, with their aberrant activity linked to cancer prognosis and clinical outcome. We evaluated the effect of the DUB inhibitors b-AP15 and RA-9 alone and in combination with early- and late-stage lysosomal inhibitors on cell viability in a panel of triple negative breast cancer (TNBC) cell lines. Our results indicate small-molecule DUB inhibitors have a profound effect on TNBC viability and lead to activation of autophagy as a cellular mechanism to compensate for ubiquitin-proteasome-system stress. Treatment with sub-optimal doses of DUB and lysosome inhibitors synergistically kills TNBC cells. This supports the evaluation of DUB inhibition, in combination with lysosomal inhibition, as a therapeutic approach for the treatment of TNBC

    Analogs of the Dopamine Metabolite 5,6-Dihydroxyindole Bind Directly to and Activate the Nuclear Receptor Nurr1

    No full text
    The nuclear receptor-related 1 protein, Nurr1, is a transcription factor critical for the development and maintenance of dopamine-producing neurons in the substantia nigra pars compacta, a cell population that progressively loses the ability to make dopamine and degenerates in Parkinson’s disease. Recently, we demonstrated that Nurr1 binds directly to and is regulated by the endogenous dopamine metabolite 5,6-dihydroxyindole (DHI). Unfortunately, DHI is an unstable compound, and thus a poor tool for studying Nurr1 function. Here, we report that 5-chloroindole, an unreactive analog of DHI, binds directly to the Nurr1 ligand binding domain with micromolar affinity and stimulates the activity of Nurr1, including the transcription of genes governing the synthesis and packaging of dopamine
    corecore