1,925 research outputs found

    Contextual-based Image Inpainting: Infer, Match, and Translate

    Full text link
    We study the task of image inpainting, which is to fill in the missing region of an incomplete image with plausible contents. To this end, we propose a learning-based approach to generate visually coherent completion given a high-resolution image with missing components. In order to overcome the difficulty to directly learn the distribution of high-dimensional image data, we divide the task into inference and translation as two separate steps and model each step with a deep neural network. We also use simple heuristics to guide the propagation of local textures from the boundary to the hole. We show that, by using such techniques, inpainting reduces to the problem of learning two image-feature translation functions in much smaller space and hence easier to train. We evaluate our method on several public datasets and show that we generate results of better visual quality than previous state-of-the-art methods.Comment: ECCV 2018 camera read

    Analyzing eta' photoproduction data on the proton at energies of 1.5--2.3 GeV

    Get PDF
    The recent high-precision data for the reaction γppη\gamma p\to p\eta' at photon energies in the range 1.5--2.3 GeV obtained by the CLAS collaboration at the Jefferson Laboratory have been analyzed within an extended version of the photoproduction model developed previously by the authors based on a relativistic meson-exchange model of hadronic interactions [Phys. Rev. C \textbf{69}, 065212 (2004)]. The η\eta' photoproduction can be described quite well over the entire energy range of available data by considering S11S_{11}, P11P_{11}, P13P_{13}, and D13D_{13} resonances, in addition to the tt-channel mesonic currents. The observed angular distribution is due to the interference between the tt-channel and the nucleon ss- and uu-channel resonance contributions. The j=3/2j=3/2 resonances are required to reproduce some of the details of the measured angular distribution. For the resonances considered, our analysis yields mass values compatible with those advocated by the Particle Data Group. We emphasize, however, that cross-section data alone are unable to pin down the resonance parameters and it is shown that the beam and/or target asymmetries impose more stringent constraints on these parameter values. It is found that the nucleonic current is relatively small and that the NNηNN\eta^\prime coupling constant is not expected to be much larger than 2.Comment: Revised version based on revised (finalized) CLAS data (14 pages, 10 figures, RevTeX4

    Temperature- and Magnetic-Field-Dependent Optical Properties of Heavy Quasiparticles in YbIr2Si2

    Full text link
    We report the temperature- and magnetic-field-dependent optical conductivity spectra of the heavy electron metal YbIr2_2Si2_2. Upon cooling below the Kondo temperature (TKT_{\rm K}), we observed a typical charge dynamics that is expected for a formation of a coherent heavy quasiparticle state. We obtained a good fitting of the Drude weight of the heavy quasiparticles by applying a modified Drude formula with a photon energy dependence of the quasiparticle scattering rate that shows a similar power-law behavior as the temperature dependence of the electrical resistivity. By applying a magnetic field of 6T below TKT_{\rm K}, we found a weakening of the effective dynamical mass enhancement by about 12% in agreement with the expected decrease of the 4f4f-conduction electron hybridization on magnetic field.Comment: 5 pages, 4 figures. to be published in Journal of the Physical Society of Japan Vol. 79 (2010) No. 1

    Exclusive ϕ\phi production in proton-proton collisions in the resonance model

    Full text link
    The exclusive ϕ\phi meson production in proton-proton reactions is calculated within the resonance model. The considered model was already successfully applied to the description of π\pi, η\eta, ρ\rho, ω\omega, ππ\pi\pi production in proton-proton collisions. The only new parameter entering into the model is the ωϕ\omega-\phi mixing angle θmix\theta_{mix} which is taken equal to θmix3.7o\theta_{mix} \approx 3.7^o.Comment: 7 pages, 1 figure, to appear in the brief report section of PR

    Far-infrared optical conductivity of CeCu2Si2

    Full text link
    Journal ref.: J. Phys.: Condens. Matter 25, 065602 (2013): We investigated the optical reflectivity of the heavy-fermion metal CeCu2Si2 in the energy range 3 meV - 30 eV for temperatures between 4K - 300K. The results for the charge dynamics indicate a behavior that is expected for the formation of a coherent heavy quasiparticle state: Upon cooling the spectra of the optical conductivity indicate a narrowing of the coherent response. Below temperatures of 30 K a considerable suppression of conductivity evolves below a peak structure at 13 meV. We assign this gap-like feature to strong electron correlations due to the 4f-conduction electron hybridization.Comment: 7 pages, 3 figure

    Stochastic Process Associated with Traveling Wave Solutions of the Sine-Gordon Equation

    Full text link
    Stochastic processes associated with traveling wave solutions of the sine-Gordon equation are presented. The structure of the forward Kolmogorov equation as a conservation law is essential in the construction and so is the traveling wave structure. The derived stochastic processes are analyzed numerically. An interpretation of the behaviors of the stochastic processes is given in terms of the equation of motion.Comment: 12 pages, 9 figures; corrected typo

    Optical study of archetypical valence-fluctuating Eu-systems

    Full text link
    We have investigated the optical conductivity of the prominent valence fluctuating compounds EuIr2Si2 and EuNi2P2 in the infrared energy range to get new insights into the electronic properties of valence fluctuating systems. For both compounds we observe upon cooling the formation of a renormalized Drude response, a partial suppression of the optical conductivity below 100 meV and the appearance of a mid-infrared peak at 0.15 eV for EuIr2Si2 and at 0.13 eV for EuNi2P2. Most remarkably, our results show a strong similarity with the optical spectra reported for many Ce- or Yb-based heavy fermion metals and intermediate valence systems, although the phase diagrams and the temperature dependence of the valence differ strongly between Eu- and Ce-/Yb-systems. This suggests that the hybridization between 4f- and conduction electrons, which is responsible for the properties of Ce- and Yb-systems, plays an important role in valence fluctuating Eu-systems

    Electronic-Structure-Driven Magnetic Ordering in a Kondo Semiconductor CeOs2Al10

    Get PDF
    We report the anisotropic changes in the electronic structure of a Kondo semiconductor CeOs2_2Al10_{10} across an anomalous antiferromagnetic ordering temperature (T0T_0) of 29 K, using optical conductivity spectra. The spectra along the aa- and cc-axes indicate that a cc-ff hybridization gap emerges from a higher temperature continuously across T0T_0. Along the b-axis, on the other hand, a different energy gap with a peak at 20 meV appears below 39 K, which is higher temperature than T0T_0, because of structural distortion. The onset of the energy gap becomes visible below T0T_0. Our observation reveals that the electronic structure as well as the energy gap opening along the b-axis due to the structural distortion induces antiferromagnetic ordering below T0T_0.Comment: 4 pages, 4 figure

    Preliminary evaluation of the friends for life program on students' and teachers' emotional states for a school in a low socio-economic status area

    Get PDF
    The purpose of this study was to examine the impact of the FRIENDS for Life program on students' and teachers' emotional outcomes in a school serving a high-poverty population. The focus of the intervention was to train/coach teachers with strategies to develop social and emotional skills for students. A single group, pre/post-test design was used to conduct a preliminary investigation of the intervention to improve participants' social and emotional outcomes. At the end of the intervention, students who were at risk showed significant decrease in their anxiety levels and teacher's demonstrated significant improvements on their emotional resilience

    Experiments in the automatic marking of ER-Diagrams

    Get PDF
    In this paper we present an approach to the computer understanding of diagrams and show how it can be successfully applied to the automatic marking (grading) of student attempts at drawing entity-relationship (ER) diagrams. The automatic marker has been incorporated into a revision tool to enable students to practice diagramming and obtain feedback on their attempts
    corecore