5,171 research outputs found
Determination of Fares: Pricing Theory and Economic Efficiency
The concept of economic efficiency is described, its application to the pricing of air transport services, and its relevance as a policy objective are outlined. The first two sections discuss economic efficiency in general terms, whereas the third applies this norm to several airline pricing problems. The final section emphasizes the importance of industry behavior as a parameter in policy analysis
A comparison of measured and predicted sphere shock shapes in hypersonic flows with density ratios from 4 to 19
Measured shock shapes are presented for sphere and hemisphere models in helium, air, CF4, C2F6, and CO2 test gases, corresponding to normal-shock density ratios (primary factor governing shock detachment distance of blunt bodies at hypersonic speeds) from 4 to 19. These shock shapes were obtained in three facilities capable of generating the high density ratios experienced during planetary entry at hypersonic conditions; namely, the 6-inch expansion tube, with hypersonic CF4 tunnel, and pilot CF4 Mach 6 tunnel (with CF4 replaced by C2F6). Measured results are compared with several inviscid perfect-gas shock shape predictions, in which an effective ratio of specific heats is used as input, and with real-gas predictions which include effects of a laminar viscous layer and thermochemical nonequilibrium
A program for calculating expansion-tube flow quantities for real-gas mixtures and comparison with experimental results
A computer program written in FORTRAN 4 language is presented which determines expansion-tube flow quantities for real test gases CO2 N2, O2, Ar, He, and H2, or mixtures of these gases, in thermochemical equilibrium. The effects of dissociation and first and second ionization are included. Flow quantities behind the incident shock into the quiescent test gas are determined from the pressure and temperature of the quiescent test gas in conjunction with: (1) incident-shock velocity, (2) static pressure immediately behind the incident shock, or (3) pressure and temperature of the driver gas (imperfect hydrogen or helium). The effect of the possible existence of a shock reflection at the secondary diaphragm of the expansion tube is included. Expansion-tube test-section flow conditions are obtained by performing an isentropic unsteady expansion from the conditions behind the incident shock or reflected shock to either the test-region velocity or the static pressure. Both a thermochemical-equilibrium expansion and a frozen expansion are included. Flow conditions immediately behind the bow shock of a model positioned at the test section are also determined. Results from the program are compared with preliminary experimental data obtained in the Langley 6-inch expansion tube
A learning controller for nonrepetitive robotic operation
A practical learning control system is described which is applicable to complex robotic and telerobotic systems involving multiple feedback sensors and multiple command variables. In the controller, the learning algorithm is used to learn to reproduce the nonlinear relationship between the sensor outputs and the system command variables over particular regions of the system state space, rather than learning the actuator commands required to perform a specific task. The learned information is used to predict the command signals required to produce desired changes in the sensor outputs. The desired sensor output changes may result from automatic trajectory planning or may be derived from interactive input from a human operator. The learning controller requires no a priori knowledge of the relationships between the sensor outputs and the command variables. The algorithm is well suited for real time implementation, requiring only fixed point addition and logical operations. The results of learning experiments using a General Electric P-5 manipulator interfaced to a VAX-11/730 computer are presented. These experiments involved interactive operator control, via joysticks, of the position and orientation of an object in the field of view of a video camera mounted on the end of the robot arm
Flux-correlation approach to characterizing reaction pathways in quantum systems: a study of condensed-phase proton-coupled electron transfer
We introduce a simple method for characterizing reactive pathways in quantum systems. Flux auto-correlation
and cross-correlation functions are employed to develop a quantitative measure of dynamical coupling in
quantum transition events, such as reactive tunnelling and resonant energy transfer. We utilize the method to
study condensed-phase proton-coupled electron transfer (PCET) reactions and to determine the relative
importance of competing concerted and sequential reaction pathways. Results presented here include numerically
exact quantum dynamics simulations for model condensed-phase PCET reactions. This work demonstrates the
applicability of the new method for the analysis of both approximate and exact quantum dynamics simulations
Sampling diffusive transition paths
We address the problem of sampling double-ended diffusive paths. The ensemble
of paths is expressed using a symmetric version of the Onsager-Machlup formula,
which only requires evaluation of the force field and which, upon direct time
discretization, gives rise to a symmetric integrator that is accurate to second
order. Efficiently sampling this ensemble requires avoiding the well-known
stiffness problem associated with sampling infinitesimal Brownian increments of
the path, as well as a different type of stiffness associated with sampling the
coarse features of long paths. The fine-feature sampling stiffness is
eliminated with the use of the fast sampling algorithm (FSA), and the
coarse-feature sampling stiffness is avoided by introducing the sliding and
sampling (S&S) algorithm. A key feature of the S&S algorithm is that it enables
massively parallel computers to sample diffusive trajectories that are long in
time. We use the algorithm to sample the transition path ensemble for the
structural interconversion of the 38-atom Lennard-Jones cluster at low
temperature.Comment: 13 pages 5 figure
Structure and finiteness properties of subdirect products of groups
We investigate the structure of subdirect products of groups, particularly
their finiteness properties. We pay special attention to the subdirect products
of free groups, surface groups and HNN extensions. We prove that a finitely
presented subdirect product of free and surface groups virtually contains a
term of the lower central series of the direct product or else fails to
intersect one of the direct summands. This leads to a characterization of the
finitely presented subgroups of the direct product of 3 free or surface groups,
and to a solution to the conjugacy problem for arbitrary finitely presented
subgroups of direct products of surface groups. We obtain a formula for the
first homology of a subdirect product of two free groups and use it to show
there is no algorithm to determine the first homology of a finitely generated
subgroup.Comment: 29 pages, no figure
Quantum diffusion in liquid water from ring polymer molecular dynamics
We have used the ring polymer molecular-dynamics method to study the translational and orientational motions in an extended simple point charge model of liquid water under ambient conditions. We find, in agreement with previous studies, that quantum-mechanical effects increase the self-diffusion coefficient D and decrease the relaxation times around the principal axes of the water molecule by a factor of around 1.5. These results are consistent with a simple Stokes-Einstein picture of the molecular motion and suggest that the main effect of the quantum fluctuations is to decrease the viscosity of the liquid by about a third. We then go on to consider the system-size scaling of the calculated self-diffusion coefficient and show that an appropriate extrapolation to the limit of infinite system size increases D by a further factor of around 1.3 over the value obtained from a simulation of a system containing 216 water molecules. These findings are discussed in light of the widespread use of classical molecular-dynamics simulations of this sort of size to model the dynamics of aqueous systems
Torsional path integral Monte Carlo method for the quantum simulation of large molecules
A molecular application is introduced for calculating quantum statistical mechanical expectation values of large molecules at nonzero temperatures. The Torsional Path Integral Monte Carlo (TPIMC) technique applies an uncoupled winding number formalism to the torsional degrees of freedom in molecular systems. The internal energy of the molecules ethane, n-butane, n-octane, and enkephalin are calculated at standard temperature using the TPIMC technique and compared to the expectation values obtained using the harmonic oscillator approximation and a variational technique. All studied molecules exhibited significant quantum mechanical contributions to their internal energy expectation values according to the TPIMC technique. The harmonic oscillator approximation approach to calculating the internal energy performs well for the molecules presented in this study but is limited by its neglect of both anharmonicity effects and the potential coupling of intramolecular torsion
- …