76 research outputs found

    High-field transport properties of a P-doped BaFe₂As₂ film on technical substrate

    Get PDF
    High temperature (high-Tc) superconductors like cuprates have superior critical current properties in magnetic fields over other superconductors. However, superconducting wires for high-field-magnet applications are still dominated by low-Tc Nb3Sn due probably to cost and processing issues. The recent discovery of a second class of high-Tc materials, Fe-based superconductors, may provide another option for high-field-magnet wires. In particular, AEFe2As2 (AE: Alkali earth elements, AE-122) is one of the best candidates for high-field-magnet applications because of its high upper critical field, Hc2, moderate Hc2 anisotropy, and intermediate Tc. Here we report on in-field transport properties of P-doped BaFe2As2 (Ba-122) thin films grown on technical substrates by pulsed laser deposition. The P-doped Ba-122 coated conductor exceeds a transport Jc of 105 A/cm2 at 15 T for main crystallographic directions of the applied field, which is favourable for practical applications. Our P-doped Ba-122 coated conductors show a superior in-field Jc over MgB2 and NbTi, and a comparable level to Nb3Sn above 20 T. By analysing the E − J curves for determining Jc, a non-Ohmic linear differential signature is observed at low field due to flux flow along the grain boundaries. However, grain boundaries work as flux pinning centres as demonstrated by the pinning force analysis

    Immunoregulatory effects triggered by immunobiotic Lactobacillus jensenii TL2937 strain involve efficient phagocytosis in porcine antigen presenting cells

    Get PDF
    Background: Immunobiotic Lactobacillus jensenii TL2937 modulates porcine mononuclear phagocytes from Peyer?s patches (PPMPs) and induces a differential production of pro- and anti-inflammatory cytokines in response to Toll-like receptor (TLR)-4 activation. Objective: In view of the important role played by phagocytosis in the activation of antigen presenting cells (APCs), the aim of the present work was to examine the interaction of TL2937 with porcine PPMPs focusing on phagocytosis. In addition, this study aimed to investigate whether the effects of L. jensenii TL2937 in porcine blood monocyte-derived dendritic cells (MoDCs) are similar to those found in PPMPs considering that MoDCs do not recapitulate all functions of mucosal APCs. Results: studies showed a high ability of porcine CD172a+ PPMPs to phagocytose L. jensenii TL2937. Interestingly, our results also revealed a reduced capacity of the non-immunomodulatory L. plantarum TL2766 to be phagocytosed by those immune cells. Phagocytosis of L. jensenii TL2937 by porcine PPMPs was partially dependent on TLR2. In addition, we demonstrated that TL2937 strain was able to improve the expression of IL-1, IL-12 and IL-10 in immature MoDCs resembling the effect of this immunobiotic bacterium on PPMPs. Moreover, similarly to PPMPs those immunomodulatory effects were related to the higher capacity of TL2937 to be phagocytosed by immature MoDCs. Conclusions: Microbial recognition in APCs could be effectively mediated through ligand-receptor interactions that then mediate phagocytosis and signaling. For the immunobiotic strain TL2937, TLR2 has a partial role for its interaction with porcine APCs and it is necessary to investigate the role of other receptors. A challenge for future research will be advance in the full understanding of the molecular interactions of immunobiotic L. jensenii TL2937 with porcine APCs that will be crucial for the successful development of functional feeds for the porcine host. This study is a step in that direction.Fil: Tsukida, Kohichiro. Tohoku University; JapónFil: Takahashi, Takuya. Tohoku University; JapónFil: Iida, Hikaru. Tohoku University; JapónFil: Kanmani, Paulraj. Tohoku University; JapónFil: Suda, Yoshihito. Miyagi University; JapónFil: Nochi, Tomonori. Tohoku University; JapónFil: Ohwada, Shuichi. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Ohkawara, Sou. Meiji Seika Pharma Co., Ltd. Agricultural & Veterinary Division; JapónFil: Makino, Seiya. Meiji Co., Ltd. Division of Research and Development; JapónFil: Kano, Hiroshi. Meiji Co., Ltd. Division of Research and Development; JapónFil: Saito, Tadao. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; ArgentinaFil: Kitazawa, Haruki. Tohoku University; Japó

    K-doped Ba122 epitaxial thin film on MgO substrate by buffer engineering

    Full text link
    Molecular beam epitaxy of K-doped Ba122 (Ba1x_{1-x}Kx_xFe2_\text{2}As2_\text{2}) superconductor was realized on a MgO substrate. Microstructural observation revealed that the undoped Ba122 served as a perfect buffer layer for epitaxial growth of the K-doped Ba122. The film exhibited a high critical temperature of 39.8 K and a high critical current density of 3.9 MA/cm2^\text{2} at 4 K. The successful growth of epitaxial thin film will enable artificial single grain boundary on oxide bicrystal substrates and reveal the grain boundary transport nature of K-doped Ba122.Comment: 5 pages, 4 figures, accepted manuscript Supercond. Sci. Technol 202

    Isolation and immunocharacterization of lactobacillus salivarius from the intestine of wakame-fed pigs to develop novel "Immunosynbiotics"

    Get PDF
    Emerging threats of antimicrobial resistance necessitate the exploration of effective alternatives for healthy livestock growth strategies. ?Immunosynbiotics?, a combination of immunoregulatory probiotics and prebiotics with synergistic effects when used together in feed, would be one of the most promising candidates. Lactobacilli are normal residents of the gastrointestinal tract of pigs, and many of them are able to exert beneficial immunoregulatory properties. On the other hand, wakame (Undaria pinnafida), an edible seaweed, has the potential to be used as an immunoregulatory prebiotic when added to livestock feed. Therefore, in order to develop a novel immunosynbiotic, we isolated and characterized immunoregulatory lactobacilli with the ability to utilize wakame. Following a month-long in vivo wakame feeding trial in 8-week-old Landrace pigs (n = 6), sections of intestinal mucous membrane were processed for bacteriological culture and followed by identification of pure colonies by 16S rRNA sequence. Each isolate was characterized in vitro in terms of their ability to assimilate to the wakame and to differentially modulate the expression of interleukin-6 (IL-6) and interferon beta (IFN-β) in the porcine intestinal epithelial (PIE) cells triggered by Toll-like receptor (TLR)-4 and TLR-3 activation, respectively. We demonstrated that feeding wakame to pigs significantly increased the lactobacilli population in the small intestine. We established a wakame-component adjusted culture media that allowed the isolation and characterization of a total of 128 Lactobacilli salivarius colonies from the gut of wakame-fed pigs. Interestingly, several L. salivarius isolates showed both high wakame assimilation ability and immunomodulatory capacities. Among the wakame assimilating isolates, L. salivarius FFIG71 showed a significantly higher capacity to upregulate the IL-6 expression, and L. salivarius FFIG131 showed significantly higher capacity to upregulate the IFN-β expression; these could be used as immunobiotic strains in combination with wakame for the development of novel immunologically active feeds for pigs.Fil: Masumizu, Yuki. Tohoku University; JapónFil: Zhou, Binghui. Tohoku University; JapónFil: Humayun Kober, AKM. Tohoku University; Japón. Chittagong Veterinary and Animal Sciences University; BangladeshFil: Islam, M. Aminul. Agricultural University; Bangladesh. Tohoku University; JapónFil: Iida, Hikaru. Tohoku University; JapónFil: Ikeda-Ohtsubo, Wakako. Tohoku University; JapónFil: Suda, Yoshihito. Department Of Food Agriculture, Miyagi University; JapónFil: Albarracín, Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; Japón. Universidad Nacional de Tucumán; ArgentinaFil: Nochi, Tomonori. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Suzuki, Keiichi. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Centro de Referencia para Lactobacilos; Argentina. Tohoku University; JapónFil: Kitazawa, Haruki. Tohoku University; Japó

    High Jc_{c} and low anisotropy of hydrogen doped NdFeAsO superconducting thin film

    Get PDF
    The recent realisations of hydrogen doped LnFeAsO (Ln = Nd and Sm) superconducting epitaxial thin films call for further investigation of their structural and electrical transport properties. Here, we report on the microstructure of a NdFeAs(O,H) epitaxial thin film and its temperature, field, and orientation dependencies of the resistivity and the critical current density Jc_{c}. The superconducting transition temperature Tc_{c} is comparable to NdFeAs(O,F). Transmission electron microscopy investigation supported that hydrogen is homogenously substituted for oxygen. A high self-field Jc_{c} of over 10 MA/cm2^{2} was recorded at 5 K, which is likely to be caused by a short London penetration depth. The anisotropic Ginzburg–Landau scaling for the angle dependence of Jc_{c} yielded temperature-dependent scaling parameters γJ_{J} that decreased from 1.6 at 30 K to 1.3 at 5 K. This is opposite to the behaviour of NdFeAs(O,F). Additionally, γJ_{J} of NdFeAs(O,H) is smaller than that of NdFeAs(O,F). Our results indicate that heavily electron doping by means of hydrogen substitution for oxygen in LnFeAsO is highly beneficial for achieving high Jc_{c} with low anisotropy without compromising Tc_{c}, which is favourable for high-field magnet applications

    Transcriptomic Analysis of the Innate Antiviral Immune Response in Porcine Intestinal Epithelial Cells: Influence of Immunobiotic Lactobacilli

    Get PDF
    Lactobacillus rhamnosus CRL1505 and Lactobacillus plantarum CRL1506 are immunobiotic strains able to increase protection against viral intestinal infections as demonstrated in animal models and humans. To gain insight into the host-immunobiotic interaction, the transcriptomic response of porcine intestinal epithelial (PIE) cells to the challenge with viral molecular associated pattern poly(I:C) and the changes in the transcriptomic profile induced by the immunobiotics strains CRL1505 and CRL1506 were investigated in this work. By using microarray technology and reverse transcription PCR, we obtained a global overview of the immune genes involved in the innate antiviral immune response in PIE cells. Stimulation of PIE cells with poly(I:C) significantly increased the expression of IFN-α and IFN-β, several interferon-stimulated genes, cytokines, chemokines, adhesion molecules, and genes involved in prostaglandin biosynthesis. It was also determined that lactobacilli differently modulated immune gene expression in poly(I:C)-challenged PIE cells. Most notable changes were found in antiviral factors (IFN-α, IFN-β, NPLR3, OAS1, OASL, MX2, and RNASEL) and cytokines/chemokines (IL-1β, IL-6, CCL4, CCL5, and CXCL10) that were significantly increased in lactobacilli-treated PIE cells. Immunobiotics reduced the expression of IL-15 and RAE1 genes that mediate poly(I:C) inflammatory damage. In addition, lactobacilli treatments increased the expression PLA2G4A, PTGES, and PTGS2 that are involved in prostaglandin E2 biosynthesis. L. rhamnosus CRL1505 and L. plantarum CRL1506 showed quantitative and qualitative differences in their capacities to modulate the innate antiviral immune response in PIE cells, which would explain the higher capacity of the CRL1505 strain when compared to CRL1506 to protect against viral infection and inflammatory damage in vivo. These results provided valuable information for the deeper understanding of the host-immunobiotic interaction and their effect on antiviral immunity. The comprehensive transcriptomic analyses successfully identified a group of genes (IFN-β, RIG1, RNASEL, MX2, A20, IL27, CXCL5, CCL4, PTGES, and PTGER4), which can be used as prospective biomarkers for the screening of new antiviral immunobiotics in PIE cells and for the development of novel functional food and feeds, which may help to prevent viral infections.Fil: Albarracín, Leonardo Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentina. Tohoku University; JapónFil: Kobayashi, Hisakazu. Tohoku University; JapónFil: Iida, Hikaru. Tohoku University; JapónFil: Sato, Nana. Tohoku University; JapónFil: Nochi, Tomonori. Tohoku University; JapónFil: Aso, Hisashi. Tohoku University; JapónFil: Salva, Maria Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Alvarez, Gladis Susana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Kitazawa, Haruki. Tohoku University; JapónFil: Villena, Julio Cesar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; Argentin
    corecore