19 research outputs found

    Optical and structural properties of Nd doped SnO2 powder fabricated by the sol-gel method

    Get PDF
    We report on the structural and optical properties of undoped and neodymium doped SnO2 powders (0, 1, 3, and 5 at% of Nd) synthesized by the sol-gel method. SEM and TEM microscopy techniques reveal a nanometric scale of the powders. We show that the tetragonal rutile phase is achieved after annealing at 700 degrees C. The crystallite size of the doped SnO2 is found to decrease gradually with the increase of Nd content without changing the SnO2 structure. A strong decrease in the intensity of the Raman peaks is noted for doped powders, which can be attributed to the location of Nd3+ ions at the Sn sites indicating Nd incorporation into the host matrix. For the first time the optical properties were studied by UV-VisNIR spectroscopy and revealed Nd related absorption bands in the SnO2 matrix. The investigation of the photoluminescence properties shows broad emission centred around 550-650 nm originating from defects present in the SnO2 host matrix. Under 325 nm laser excitation, a strong photoluminescence of trivalent Nd is observed in the infrared region and shows Nd related emission peaks at 885, 1065, and 1336 nm. Such a strong PL signal under laser excitation indicates that Nd3+ is optically active. The excitation dependent PL (PLE) recorded in the 450-700 nm range confirms the presence of active Nd3+ successfully inserted into the SnO2 host matrix

    Two dimensional dipolar coupling in monolayers of silver and gold nanoparticles on a dielectric substrate

    Get PDF
    The dimensionality of assembled nanoparticles plays an important role in their optical and magnetic properties, via dipolar effects and the interaction with their environment. In this work we develop a methodology for distinguishing between two (2D) and three (3D) dimensional collective interactions on the surface plasmon resonance of assembled metal nanoparticles. Towards that goal, we elaborate different sets of Au and Ag nanoparticles as suspensions, random 3D arrangements and well organized 2D arrays. Then we model their scattering cross-section using effective field methods in dimension n, including interparticle as well as particle-substrate dipolar interactions. For this modelling, two effective field medium approaches are employed, taking into account the filling factors of the assemblies. Our results are important for realizing photonic amplifier devices

    Structural, optical, and magnetic properties of polycrystalline Co-doped TiO2 synthesized by solid-state method

    No full text
    We have used a solid-state method to synthesize polycrystalline Co-doped TiO2 diluted magnetic semiconductors (DMSs) with Co concentrations of 0, and 0.5 at.%. X-ray diffraction patterns reveal that Co doped TiO2 crystallizes in the rutile tetragonal structure with no additional peaks. Transmission electron microscopy (TEM) did not indicate the presence of magnetic parasitic phases and confirmed that Co ions are uniformly distributed inside the samples. Optical absorbance measurements showed an energy band gap which decreases after doping with the Co atoms into the TiO2 matrix. Magnetization measurements revealed a paramagnetic behavior for the as-prepared Co-doped TiO2 and a ferromagnetic behavior for the same samples after annealed under a mixture of H-2/N-2 atmosphere

    Films of Tunable ZnO Nanostructures Prepared by a Surfactant-Mediated Soft Synthesis Route

    No full text
    Films of ZnO nanostructures were prepared by a soft chemical synthesis route from ZnO crystal seeds in aqueous medium, in the presence of alkylsulfates of different chain length acting as structure-directing agents. Films of arrayed single crystal ZnO nanorods were formed with short alkyl sulfates, from C6 to C8 alkylene chains, while hybrid lamellar ZnO with a platelike morphology were obtained with C10 to C18 alkyl sulfates. In the case of the short alkyl sulfates, due to the interaction between the sulfate groups and the Zn2+ planes of the ZnO structure, the growth along the c axis is partially inhibited and smaller aspect ratios of the nanorods are obtained than in alkylsulfate-free conditions. In the case of the hybrid lamellar ZnO structures which consist in ZnO layers intercalated with alkylsulfate bilayers, the structural characteristics depend on the alkylene chain length. Basal spacings increase linearly with the chain length, while the plate size decreases dramatically when the chain length exceeds C14. The different characteristics of these ZnO nanostructured films allow modifying their optical properties

    Metal nanoparticle mediated space charge and its optical control in an organic hole-only device

    Get PDF
    International audienceWe reveal the role of localized space charges in hole-only devices based on an organic semiconductor with embedded metal nanoparticles (MNPs). MNPs act as deep traps for holes and reduce the current density compared to a device without MNPs by a factor of 104 due to the build-up of localized space charge. Dynamic MNPs charged neutrality can be realized during operation by electron transfer from excitons created in the organic matrix, enabling light sensing independent of device bias. In contrast to the previous speculations, electrical bistability in such devices was not observed

    Optical and structural properties of Nd doped SnO2 powder fabricated by the sol-gel method

    No full text
    Équipe 104 : NanomatĂ©riauxInternational audienceWe report on the structural and optical properties of undoped and neodymium doped SnO2 powders (0, 1, 3, and 5 at% of Nd) synthesized by the sol-gel method. SEM and TEM microscopy techniques reveal a nanometric scale of the powders. We show that the tetragonal rutile phase is achieved after annealing at 700 degrees C. The crystallite size of the doped SnO2 is found to decrease gradually with the increase of Nd content without changing the SnO2 structure. A strong decrease in the intensity of the Raman peaks is noted for doped powders, which can be attributed to the location of Nd3+ ions at the Sn sites indicating Nd incorporation into the host matrix. For the first time the optical properties were studied by UV-VisNIR spectroscopy and revealed Nd related absorption bands in the SnO2 matrix. The investigation of the photoluminescence properties shows broad emission centred around 550-650 nm originating from defects present in the SnO2 host matrix. Under 325 nm laser excitation, a strong photoluminescence of trivalent Nd is observed in the infrared region and shows Nd related emission peaks at 885, 1065, and 1336 nm. Such a strong PL signal under laser excitation indicates that Nd3+ is optically active. The excitation dependent PL (PLE) recorded in the 450-700 nm range confirms the presence of active Nd3+ successfully inserted into the SnO2 host matrix

    Magnetic Properties of Mono- and Multilayer Assemblies of Iron Oxide Nanoparticles Promoted by SAMs

    No full text
    Owing to the wide scope of applications of magnetic nanoparticle assembling, the aim of this study is to evaluate the influence of nanoparticle aggregates on the magnetic properties of 2D assemblies. Magnetic iron oxide nanoparticles (NPs) have been synthesized by the coprecipitation (NPcop) and thermal decomposition (NPdec@OA) methods, and were assembled on self-assembled monolayers of organic molecules decorated by a phosphonic acid terminal group at their surface (SAM-PO3H2). The nanostructure and magnetic properties of assemblies depend directly on the aggregation of NP suspensions. NPcop, result in an unstable suspension and were assembled into a non-homogeneous monolayer of aggregates. The post-functionalization of NPcop with oleic acid after synthesis (NPcop@OA) favors a better stability of the suspension and enhances the nanostructure of the assembly, although smaller NP aggregates remain. In contrast, NPdec@OA which are functionalized in situ by oleic acid during the synthesis step were assembled as individual nanomagnets and result in a dense monolayer. Multi layer assemblies were also prepared from NPcop@OA and NPdec@OA by performing the alternative deposition of these NPs with (1,4-phenylene)bisphosphonic acid. The nanostructure of assemblies has been studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The magnetic properties of monolayer and multilayer assemblies have been studied by using a SQUID magnetometer. While assemblies of individual NPs enhance dipolar interactions in-plane as a result of shape anisotropy, assemblies of NP aggregates favor stronger dipolar interactions with random orientation. The magnetic properties of monolayer and multilayer assemblies have also been compared. The dimensionality (2D vs 3D) has a strong effect on the dipolar interactions when individual NPs are considered in contrast to aggregated nanoparticles
    corecore