9 research outputs found

    A Holistic Approach Towards Surface Topography Analyses for Ice Tribology Applications

    Get PDF
    A surface texture can be subdivided into three categories based on the magnitude of its wavelengths, i.e., macro-geometrical form, waviness, and roughness (from largest to smallest). Together, these components define how a surface will interact with the opposing surface. In most ice tribology studies, <2% of the entire sample surface is topographically analyzed. Although such a small percentage of the entire surface area generally provides statistically relevant information, the missing information about the texture complexity on a larger scale might reduce the possibility of accurately explaining the resulting tribological behavior. The purpose of this study was to review the existing surface measurement methods related to ice tribology and to present a holistic approach towards surface topography measurements for ice tribology applications. With the holistic surface measurement approach, the entire sample surfaces are scanned, and the measured data is analyzed on different magnitude levels. The discussed approach was applied to sandblasted steel samples which were afterward tested on two different ice tribometers. The experimental results showed that additional information about the sample surface topography enabled a better understanding of the ice friction mechanisms and allowed for a more straightforward correlation between the sample surface topography and its ice friction response

    Static and Dynamic Friction of Pure and Friction-Modified PA6 Polymers in Contact with Steel Surfaces: Influence of Surface Roughness and Environmental Conditions

    No full text
    In the present study, PA6 polymers with and without solid lubricant inclusions were investigated against S1100QL steel surfaces that had different surface roughness values—a very high surface roughness (Rz ≈ 40 µm) and a low surface roughness (Rz ≈ 5 µm). Static and dynamic friction coefficients were analysed under a series of nominal contact pressures (2.5 to 40 N/mm2) considering the influences of polymer water saturation, temperature, counter-body surface roughness and lubrication. Mechanisms for the observed influences of the respective parameters are provided and are interpreted from the view of the adhesive and deformative contributions to the friction force

    Reduction of the Adhesive Friction of Elastomers through Laser Texturing of Injection Molds

    No full text
    It is well known that elastomers usually possess poor dry sliding friction properties due to their highly adhesive character. In order to overcome this problematic behavior in industrial applications, interfacial materials such as oils, greases, coatings, or lacks are normally used in order to separate or to functionalize the contact surfaces of elastomers. Alternatively, the high adhesion tendency of elastomers may be explicitly reduced by modifying the elastomer composition itself or by enabling a reduction of its effective contact area through, for example, surface laser texturing. This second approach, i.e., the reduction of the adhesive character of elastomers through laser structuring, will be the main topic of the present study. For this purpose, different micro-sized grooved structures were produced on flat injection molds using an ultra-short pulsed laser. The micro-structured molds were then used to produce injection molded micro-ridged Liquid Silicone Rubber (LSR) sample pads. The investigations consisted firstly of determining the degree of replication of the mold micro-structures onto the surface of the LSR pads and secondly, to ascertain the degree of reduction of the friction force (or coefficient of friction) of these micro-ridged LSR pads in comparison to the benchmark (unstructured LSR pads) when tested under dry conditions against Aluminum alloy (Al-6082) or PA6.6-GF30 plates. For this second part of the investigation, the normal force (or contact pressure) dependency of the coefficient of friction was determined through stepwise load increasing friction tests. The results of these investigations have shown that the production of micro-ridged surfaces on LSR pads through laser structuring of the injection molds could be successfully achieved and that it enables a significant reduction of the friction force for low normal forces (or contact pressures), where the component of adhesion friction is playing an important and determining role in the overall friction behavior of the LSR elastomer

    Production and tribological characterization of tailored laser-induced surface 3D microtextures

    No full text
    The aim of the present study was firstly to determine the manufacturing feasibility of a specific surface 3D-microtexturing on steel through an ultra-short pulsed laser, and secondly to investigate the tribological properties under 2 different lubrication conditions: oil-lubricated and antifriction coated. The selected 3D-microtexture consisted of 2 different levels of quadratic micropillars having side dimensions of approximately 45 µm, heights of about 35 µm and periods of 80 µm. It was shown that the production of specific 3D-microtextures on steel substrates using an ultra-short pulsed laser was feasible, and that the reproducibility of the texture dimensions over the entire textured region was extremely good. Frictional investigations have shown that, in comparison to the benchmark (untextured samples), the 3D-microtextured samples do not induce any significant improvements in the coefficient of friction (COF) under oil-lubricated conditions, but that under antifriction coated conditions, significant improvements in the friction coefficients may be achieved. Wear-based tribological tests have shown that the antifriction coating on benchmark samples was completely depleted, which greatly influenced their friction and wear behavior, since steel-steel contact occurred during testing. For the 3D-microtexture, the antifriction coating was also partially depleted; however, it accumulated itself in the microtexture which acted as a potential lubricant reservoir

    The Influence of Isotropic Surface Roughness of Steel Sliders on Ice Friction Under Different Testing Conditions

    No full text
    Ice friction is affected by various system and surface-related parameters such as ice temperature, ambient air temperature and humidity, relative sliding velocity, specific surface pressures and surface texture (waviness, roughness) as well as the macroscopic geometry of the samples. The influences of these parameters cannot be easily separated from each other. Therefore, ice friction is a very complex tribological system and it is challenging to draw sound conclusions from the experiments. In this work, ice friction experiments with stainless steel samples that have different isotropic surface roughness values were carried out. Two tribological experimental setups were used: (i) an inclined ice track where the sliding velocity of the freely sliding steel samples was determined and (ii) an oscillating tribometer, where the coefficient of friction was assessed. For both experimental setups, the environmental parameters such as air temperature, relative humidity and ice surface temperature as well as the test parameters such as normal load and surface pressure were kept as constant as possible. The results of the experiments are discussed in relation to the ice friction mechanisms and the friction regimes

    Formation of surface deposits on steel and titanium aviation fuel tubes under real operating conditions

    No full text
    In this study, stainless steel and titanium (Ti) tubes obtained from a turbofan engine after the end of its lifetime were analyzed in order to compare the amount of pyrolytic coke present and its influence on the parent, base material. Various analytical techniques including microhardness and topographical evaluations, optical emission spectrometry (OES), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) were applied. On steel surfaces, a thick pyrolytic coke deposition layer consisting of carbon and oxygen and also containing elements from the tube material, fuel, and fuel additives was found. The concentration of elements from the pyrolytic coke continuously decreased with distance from the surface of the deposit, while the concentrations of elements from the tube material continuously increased, with the concentrations of elements from the fuel and the fuel additives being relatively constant. With ultrasonic cleaning in distilled water, most of the deposits could be removed. Only carbon-rich patches with a thickness of more than 300 nm remained adhered to the surface and/or had diffused into the original material. On Ti surfaces, the thickness of the C-rich fuel deposit layer was significantly thinner as compared to that on the stainless steel; however, the surface was covered with an -3 μm-thick oxide layer, which consisted of elements from the fuel additives. It is believed that the beneficial properties of Ti covered with a thin layer of TiO2 , such as low adhesion and/or surface energy, have promoted different deposition mechanisms compared to those of stainless steel and thus prevented pyrolytic coke deposition and the related material deterioration observed on stainless steel. </p
    corecore