87 research outputs found

    Viral Infection Dynamics Model Based on a Markov Process with Time Delay between Cell Infection and Progeny Production

    Get PDF
    Many human virus infections including those with the human immunodeficiency virus type 1 (HIV) are initiated by low numbers of founder viruses. Therefore, random effects have a strong influence on the initial infection dynamics, e.g., extinction versus spread. In this study, we considered the simplest (so-called, ‘consensus’) virus dynamics model and incorporated a delay between infection of a cell and virus progeny release from the infected cell. We then developed an equivalent stochastic virus dynamics model that accounts for this delay in the description of the random interactions between the model components. The new model is used to study the statistical characteristics of virus and target cell populations. It predicts the probability of infection spread as a function of the number of transmitted viruses. A hybrid algorithm is suggested to compute efficiently the system dynamics in state space domain characterized by the mix of small and large species densities

    Graph Theory for Modeling and Analysis of the Human Lymphatic System

    Get PDF
    The human lymphatic system (HLS) is a complex network of lymphatic organs linked through the lymphatic vessels. We present a graph theory-based approach to model and analyze the human lymphatic network. Two different methods of building a graph are considered: the method using anatomical data directly and the method based on a system of rules derived from structural analysis of HLS. A simple anatomical data-based graph is converted to an oriented graph by quantifying the steady-state fluid balance in the lymphatic network with the use of the Poiseuille equation in vessels and the mass conservation at vessel junctions. A computational algorithm for the generation of the rule-based random graph is developed and implemented. Some fundamental characteristics of the two types of HLS graph models are analyzed using different metrics such as graph energy, clustering, robustness, etc

    Random migration processes between two stochastic epidemic centers

    Get PDF
    We consider the epidemic dynamics in stochastic interacting population centers coupled by random migration. Both the epidemic and the migration processes are modeled by Markov chains. We derive explicit formulae for the probability distribution of the migration process, and explore the dependence of outbreak patterns on initial parameters, population sizes and coupling parameters, using analytical and numerical methods. We show the importance of considering the movement of resident and visitor individuals separately. The mean field approximation for a general migration process is derived and an approximate method that allows the computation of statistical moments for networks with highly populated centers is proposed and tested numerically

    Image Gradient Based Level Set Methods in 2D and 3D

    Get PDF

    RUSSIAN INFORMATION WAR AGAINST UKRAINIAN ARMED FORCES IN 2014–2015: THE UKRAINIAN POINT OF VIEW

    Get PDF
    In this article we will provide an overview about the processes of Russian information warfare against Ukrainian defence forces in 2014 and 2015 and present the Ukrainian point of view. At first it should be noted that Russia’s information’s operations in Ukraine is only a part of bigger non-linear2 war of Russia against Ukrainian state. András Rácz pointed out that in non-linear war “the regular military force is used mainly as a deterrent and not as a tool of open aggression” in comparison to other types of war. András Rácz accentuated what was new in year 2014 – “highly effective, in many cases almost real-time coordination of the various means employed, including political, military, special operations and information measures” that caught both the Ukrainian government and the Western countries off the guard in Crimea and Eastern part of Ukraine

    Data-driven modelling of the FRC network for studying the fluid flow in the conduit system

    Get PDF
    The human immune system is characterized by enormous cellular and anatomical complexity. Lymph nodes are key centers of immune reactivity, organized into distinct structural and functional modules including the T-cell zone, fibroblastic reticular cell (FRC) network and the conduit system. A thorough understanding of the modular organization is a prerequisite for lymphoid organ tissue-engineering. Due to the biological complexity of lymphoid organs, the development of mathematical models capable of elaborating the lymph node architecture and functional organization, has remained a major challenge in computational biology. Here, we present a computational method to model the geometry of the FRC network and fluid flow in the conduit system. It differs from the blood vascular network image-based reconstruction approaches as it develops the parameterized geometric model using the real statistics of the node degree and the edge length distributions. The FRC network model is then used to analyze the fluid flow through the underlying conduit system. A first observation is that the pressure gradient is approximately linear, which suggests homogeneity of the network. Furthermore, calculated permeability values View the MathML source show the generated network is isotropic, while investigating random variations of pipe radii (with a given mean and standard deviation) shows a significant effect on the permeability. This framework can now be further explored to systematically correlate fundamental characteristics of the FRC conduit system to more global material properties such as permeability

    Segmentation of biomedical images using active contour model with robust image feature and shape prior

    Get PDF
    In this article, a new level set model is proposed for the segmentation of biomedical images. The image energy of the proposed model is derived from a robust image gradient feature which gives the active contour a global representation of the geometric configuration, making it more robust in dealing with image noise, weak edges, and initial configurations. Statistical shape information is incorporated using nonparametric shape density distribution, which allows the shape model to handle relatively large shape variations. The segmentation of various shapes from both synthetic and real images depict the robustness and efficiency of the proposed method

    Geometrically Induced Force Interaction for Three-Dimensional Deformable Models

    Get PDF
    This work introduces a novel 3D deformable model that is based on a geometrically induced external force field, which can be conveniently generalised to arbitrary dimensions. This external force field is based on hypothesised interactions between the relative geometries of the deformable model and the object boundary. The relative geometrical configurations contribute to a dynamic vector force field that changes accordingly as the deformable model evolves. In addition, we show that by enhancing the geometrical interaction field with a nonlocal edge preserving algorithm, the new model can effectively overcome image noise. We provide a comprehensive comparative study and show that the proposed method achieves significant improvements against existing techniques

    Towards enabling a cardiovascular digital twin for human systemic circulation using inverse analysis

    Get PDF
    An exponential rise in patient data provides an excellent opportunity to improve the existing health care infrastructure. In the present work, a method to enable cardiovascular digital twin is proposed using inverse analysis. Conventionally, accurate analytical solutions for inverse analysis in linear problems have been proposed and used. However, these methods fail or are not efficient for nonlinear systems, such as blood flow in the cardiovascular system (systemic circulation) that involves high degree of nonlinearity. To address this, a methodology for inverse analysis using recurrent neural network for the cardiovascular system is proposed in this work, using a virtual patient database. Blood pressure waveforms in various vessels of the body are inversely calculated with the help of long short-term memory (LSTM) cells by inputting pressure waveforms from three non-invasively accessible blood vessels (carotid, femoral and brachial arteries). The inverse analysis system built this way is applied to the detection of abdominal aortic aneurysm (AAA) and its severity using neural networks
    • 

    corecore