
 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in :

Mathematical Biosciences

                                       

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa26751

_____________________________________________________________

 
Paper:

Sazonov, I., Kelbert, M. & Gravenor, M. (2016).  Random migration processes between two stochastic epidemic

centers. Mathematical Biosciences, 274, 45-57.

http://dx.doi.org/10.1016/j.mbs.2016.01.011

 

 

 

 

 

 

 

 

_____________________________________________________________
  
This article is brought to you by Swansea University. Any person downloading material is agreeing to abide by the

terms of the repository licence. Authors are personally responsible for adhering to publisher restrictions or conditions.

When uploading content they are required to comply with their publisher agreement and the SHERPA RoMEO

database to judge whether or not it is copyright safe to add this version of the paper to this repository. 

http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Cronfa at Swansea University

https://core.ac.uk/display/78858646?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://cronfa.swan.ac.uk/Record/cronfa26751
http://dx.doi.org/10.1016/j.mbs.2016.01.011
http://www.swansea.ac.uk/iss/researchsupport/cronfa-support/ 


 

 

Accepted Manuscript

Random migration processes between two stochastic epidemic
centers

Igor Sazonov, Mark Kelbert, Michael B. Gravenor

PII: S0025-5564(16)00022-5
DOI: 10.1016/j.mbs.2016.01.011
Reference: MBS 7746

To appear in: Mathematical Biosciences

Received date: 12 August 2015
Revised date: 19 January 2016
Accepted date: 28 January 2016

Please cite this article as: Igor Sazonov, Mark Kelbert, Michael B. Gravenor, Random migra-
tion processes between two stochastic epidemic centers, Mathematical Biosciences (2016), doi:
10.1016/j.mbs.2016.01.011

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service
to our customers we are providing this early version of the manuscript. The manuscript will undergo
copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please
note that during the production process errors may be discovered which could affect the content, and
all legal disclaimers that apply to the journal pertain.



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Highlights

• A simplest network of two stochastic epidemic centers coupled by a

random migration is modelled.

• The interaction between susceptible/infected/removed individuals as

well as their migration is described by a Markov chain.

• The mean field dynamics shows that the host and guest species should

be accounted separately.

• It is shown that the small initial contagion (SIC) approximation (being

much faster in terms of the CPU time than the direct numerical sim-

ulation) gives a good estimates for the mean value and the standard

deviation of number of infective individuals.
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Abstract

We consider the epidemic dynamics in stochastic interacting population cen-

ters coupled by a random migration. Both the epidemic and the migration

processes are modelled by Markov chains. We derive explicit formulae for

the probability distribution of the migration process, and explore the de-

pendence of outbreak patterns on initial parameters, population sizes and

coupling parameters, using analytical and numerical methods. The mean

field approximation for a general migration process is derived and an ap-

proximate method that allows the computation of statistical moments for

networks with highly populated centers is proposed and tested numerically.
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stochastic processes, network interactions

Introduction

An epidemic outbreak of an infectious disease in a single population or in

a network of populated centers develops stochastically due to random inter-

actions between discrete individuals, both within a population center and due

to a random migration between centers that make up a network. Convention-

ally, an outbreak in a highly populated center can be described by a simplified

deterministic processes in accordance with the Law of Large Numbers (LLN)

[1]. In this manner, the mean field approximation (hydrodynamic limits)

of the appropriate statistical models will establish the basic relationship be-

tween the stochastic processes and the deterministic dynamical equations,

for example the classic SIR model (susceptible/infected/ removed) and its

large family (SEIR, SIS, MSIR, etc.)

However, there are important cases when stochastic effects are essential.

Firstly, it is obviously important when the populations in centers are not

large. The second less obvious scenario can occur at the initial stage of out-

break when the number of infectives is small. At this stage, the discreteness

of the population can essentially affect the dynamics of the outbreak. For

an isolated center, these effects have been thoroughly studied, for example in

[2]. A proper analysis of a network of interacting epidemic centers requires

an account of the stochastic migration fluxes between them.

If the initial number of infectives triggering the outbreak in a particular

populated center is small (as is typical) then the LLN fails at least for the

initial time period until the number of infectives is large enough. For this
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reason the observed number of infectives can, at times, be significantly differ-

ent from the prediction of a deterministic model, i.e. the standard deviation

of the number of infectives, and, consequently, of the time until the peak

outbreak can be wide even in a highly populated center or a network of such

centers.

In principle, the probability density function (PDF), its standard devi-

ation, and other important characteristics for the outbreak forecast could

be determined by a direct numerical simulation. However, this simulation

will tend to be computationally costly. Here, our goal is to develop a tech-

nique for an analytical estimation of the outbreak statistical characteristics

by applying some perturbation methods.

Our toolkit is the so-called small initial contagion (SIC) approximation,

relevant for the case of a large populated center over the period in which the

initial number of infectives is small, cf. [2]. For a network of highly populated

SIR centers, and in the framework of deterministic models, the technique is

described in [3, 4]. In this paper, we develop a stochastic version of the

SIC approach, based on the assumption that in the real epidemic centers the

number of infectives triggering an outbreak is still small. In these situations,

our proposed SIC approach acts as a key to solving the properties of cumber-

some epidemic networks. In this work we consider the simplest network in

which the migration process is already essential: two stochastic SIR centers

coupled by random migration between them. This gives us opportunity to

focus on the effect of migration. More general networks will be considered in

subsequent works.

We have previously considered a stochastic analogue of the standard SIR
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model [2]. Using the SIC approximation, one can distinguish two linked

stages of epidemic evolution. At stage 1, of initial contamination, the num-

ber of infectives is small and a discrete formulation is vital. At this stage

the system is random, and governed by stochastic equations. At stage 2,

the developed outbreak, the numbers of individuals in all the components

are large, hence the LLN is appropriate and the standard deterministic SIR

model can describe the outbreak process accurately enough (with the bene-

fits of its simple sets of equations). Putting these two stages together, it is

therefore natural to consider a deterministic system for any particular out-

break, but with random initial conditions that are provided by the output

from the stochastic stage 1. The statistical characteristics of the complete

model are then obtained by applying the deterministic equations with ran-

dom initial conditions using the matching asymptotic expansions technique

(cf. [5]). In contrast to the traditional technique, the asymptotic approxi-

mation of a stochastic system (at a brief initial period) is matched with a

deterministic evolution with random initial conditions (for all other times).

Nevertheless, as in the traditional approach, we match the approximations

at some intermediate time t∗ in the interval where both approximations are

valid (cf. [5]).

The Markov chain (MC) describing the stochastic SIR model has been

studied previously, e.g., in [6] where a partial differential equation (PDE) for

the moment generating function was derived.

The stochastic SIR model admits a number of generalizations and exten-

sions, see e.g. [7, 8, 9, 10]. An analogous technique has also been applied

for the stochastic SIS model in [11]. Here, we develop a similar approach

5
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for a pair of linked centers and obtain approximate formulae for their main

statistical characteristics. We show that the results of large-scale numer-

ical simulation are in a good agreement with the appropriately estimated

analytical models.

This paper is organized as follows. In Section 1 we introduce a Markov

chain model describing a random epidemic outbreak in two populated cen-

ters coupled by a random process of migration of all types of population

individuals. In this section we establish the convergence of this model to

the deterministic mean-field model proposed in [12], though some technical

details are presented in the Appendix. In Section 2 we describe a model of

random migration between two interacting SIR centers taking place before

the outbreak to determine all the initial conditions for the Markov chain.

model. In this process, migration between centers is also modelled by a

Markov chain. We derive the Master/Kolmogorov equations for the proba-

bility generating functions (PGF) and solve them analytically. This analysis

confirms the diffusion-like model of migration heuristically proposed in [12].

In Section 3 the numerical algorithm for directly solving the Markov chain

model is described, the dependence of outbreak characteristics on the pop-

ulation size, the initial number of infectives and the migration parameters

are presented and discussed. In Section 4 a two-stage semi-random model

is investigated both analytically and numerically. Finally, in Discussion we

make some comparisons with previously considered models and outline the

prospects for future development.
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1. Stochastic model of two SIR centers interaction

Continuous-time Markov chain (MC) models are of vital importance to

mathematical epidemiology because they capture the stochastic nature of

individual-to-individual disease transmission [7, 8, 9, 10, 11]. For this reason

they are particular relevant on the early and final stages of epidemic when

the number of new cases is not particular large. On the stage of developed

epidemic the LLN provides a deterministic approximation in a large enough

population. Kurtz [13] and Barbour [14] justified this fluid (or hydrodynami-

cal) approximation rigorously for a suitably scaled version of the process and

studied the diffusion approximation for the scaled fluctuations around the

hydrodynamical limits. We adopt their technique for a model of interaction

centers described below.

Consider two populated centers, or nodes, 1 and 2, with initial popula-

tions N1 and N2, respectively. Let Sn(t), In(t), Rn(t) be the numbers of

(resident) host susceptibles, infectives and removed, respectively, in node n

at time t. Let Smn(t), Imn(t), Rmn(t) be numbers of guest susceptibles, infec-

tives and removed, respectively, in node n migrated (visiting) from node m

at time t. Note that in the standard SIR model, removed individuals do not

interact with others, and hence do not affect the dynamics of susceptibles or

infectives, and can be omitted from consideration [6, 15, 16].

Assume that the populations in every node are completely mixed, and the

contamination rate βn of a susceptible individual in node n at time interval

[t, t + dt] is proportional to the number of all infectives in node n: that is

host (resident) infectives In at time t plus guest infectives Imn migrated from

node m. Next, every infective in node n can be removed (representing, for

7
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example, recovery) with probability rate αn (cf. [2]).

The model now requires a migration rate γnm from node n to node m and

return rate δmn for a guest individual to return to his resident home node,

they may be different for different populations, i.e., we specify the migration

process for susceptibles by parameters γSnm,δSmn and for infectives—γInm,δImn

(cf. [12]). In reality, the return rate to the host node should usually be higher

than the migration rate to a neighbouring node, i.e., γImn < δInm, γ
S
mn < δSnm.

Taking into account the above specifications, we model a network of two

SIR centers interacting due to migration of individuals between them by a

Markov chain (MC), with a full description as summarized in Table 1.

In this model we assume the total number of individuals in the both

centers to be constant N1 +N2. Also the number of every species (host and

migrated) cannot exceed N1 or N2 in the node 1 and 2, respectively. This

gives us the restriction presented in Table 1.

If I0 infectives appear in center 1 at time t = 0 then the initial conditions

take the form

I1 = I0, S1 = N1 − I0 − S0
12, I12 = 0, S12 = S0

12,

I2 = 0, S2 = N2 − S0
21, I21 = 0, S21 = S0

21.
(1)

Here, the initial numbers of guest susceptibles S0
12 and S0

21 are random and

determined by migration processes between centers taking place before the

appearance of a single infective. In Section 2 we determine this distribution

(which turns out to be binomial) by considering the pure migration processes

that take place before the outbreak: see Eq. (19) below. Mean values for S0
12

and S0
21 are given by (9).

Numerical simulations based on this model are presented and discussed
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Table 1: Markov’s chain for two coupled SIR nodes

i Process #i Rate, νi Restriction Description

1 S1→S1− 1
I1 → I1 + 1

β1(I1+I21)S1 I1 ≤ N1 Contamination in 1 (host)

2 S21→S21− 1
I21 → I21 + 1

β1(I1+I21)S21 I21 < N2 Contamination in 1 (guest)

3 I1→ I1− 1 α1I1 Recovering in 1 (host)

4 I21→ I21− 1 α1I21 Recovering in 1 (guest)

5 S1 →S1 − 1
S12→S12 + 1

γS12S1 S12 ≤ N1 Migration from 1 to 2

6 I1 → I1 − 1
I12→ I12 + 1

γI12I1 I12 ≤ N1 Migration from 1 to 2

7 S1 →S1 + 1
S12→S12− 1

δS21S12 S1 ≤ N1 Return from 2 to 1

8 I1 → I1 + 1
I12→ I12− 1

δI21I12 I1 ≤ N1 Return from 2 to 1

9 S2→S2− 1
I2 → I2 + 1

β2(I2+I12)S2 I2 ≤ N2 Contamination in 2 (host)

10 S12→S12− 1
I12 → I12 + 1

β2(I2+I12)S12 I12 ≤ N1 Contamination in 2 (guest)

11 I2→ I2− 1 α2I2 Recovering in 2 (host)

12 I12→ I12− 1 α2I12 Recovering in 2 (guest)

13 S2 →S2 − 1
S21→S21 + 1

γS21S2 S21 ≤ N2 Migration from 2 to 1

14 I2 → I2 − 1
I21→ I21 + 1

γI21I2 I21 ≤ N2 Migration from 2 to 1

15 S2 →S2 + 1
S21→S21− 1

δS12S21 S2 ≤ N2 Return from 1 to 2

16 I2 → I2 + 1
I21→ I21− 1

δI12I21 I2 ≤ N2 Return from 1 to 2

9
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in Section 3. Since an analytical approach taken via the Master/Kolmogorov

equations (see [13]) is cumbersome, having a complicated analysis and solu-

tion for the general case, our aim here is to develop reasonable approxima-

tions.

It is well-known that a pure jump Markov process converges to a solution

of differential equation in the so-called fluid or mean-field limit, see [13, 17].

This general approach adopted for a vector process defined in Table 1 is

presented below.

Proposition 1. Consider a Markov chain (MC) {In(t), Sn(t), Inm(t), Snm(t)}
defined in Table 1 and subject to initial conditions (1). Introducing a large

parameter Λ consider also the scaled MC {I∗n(t), S∗n(t), I∗nm(t), S∗nm(t)} (n =

1, 2, m = 2, 1)

I∗n(t) = Λ−1In(t), S∗n(t) = Λ−1Sn(t),

I∗nm(t) = Λ−1Inm(t), S∗nm(t) = Λ−1Snm(t)
(2)

in populations of sizes ΛNn,ΛNm obtained by scaling the transition rates

βn → Λ−1βn, and scaling of initial conditions as

I1(0) = ΛI0, S1(0) = Λ(N1 − I0 − S0
12),

I2(0) = 0, S2(0) = Λ (N2 − S0
21) ,

I12(0) = 0, S12 = ΛS0
12,

I21(0) = 0, S21 = ΛS0
21

(3)

where independent random variables S0
12 and S0

21 have binomial PDFs (19).

The scaled MC converges in distribution as Λ → ∞ to the deterministic

10
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functions {În(t), Ŝn(t), Înm(t), Ŝnm(t)} satisfying the following ODEs

d
dt
Ŝn = −βnŜn(În + Îmn)− γSnmŜn + δSmnŜnm (4)

d
dt
În = βnŜn(În + Îmn)− αnÎn − γInmÎn + δImnÎnm (5)

d
dt
Ŝmn = −βnŜmn(În + Îmn) + γSmnŜm − δSnmŜmn (6)

d
dt
Îmn = βnŜmn(În + Îmn)− αÎmn + γImnÎm − δInmÎmn (7)

(cf. [12]), and subject to the initial conditions

Î1(0) = I0, Ŝ1(0) = N1 − I0 − S̄0
12,

Î2(0) = 0, Ŝ2(0) = N2 − S̄0
21,

Î12(0) = 0, Ŝ12 = S̄0
12,

Î21(0) = 0, Ŝ21 = S̄0
21

(8)

where

S̄0
12 =

γS12N1

γS12 + δS21

, S̄0
21 =

γS21N2

γS21 + δS12

. (9)

In fact, equations (4)–(7) can be derived phenomenologically: if the num-

ber of individuals is large enough, its change by one or by a few can be

considered as infinitesimally small. For example, the number of infectives I1

can increase due to process #1 and #8 with rates β1(I1+I21)S1 and δI21I12,

respectively, or decrease due to process #3 and #6 with rates α1I1 and γI12I1,

respectively. Therefore the rate of dI1 in time interval dt can be estimated

as dI1 =
[
β1(I1+I21)S1 + δI21I12

]
dt−

[
α1I1 + γI12I1

]
dt, that gives Eq. (5) for

n = 1,m = 2. The same holds for all other individuals. This argument can

be made rigorous with the help of Law of Large Numbers (LLN). This, then,

indicates that the mean values of the variables converge to the mean-field

(hydrodynamic) limit.

11
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The more delicate question is to establish the convergence in probabil-

ity. The formal mathematical proof neatly follows the papers [13, 17] where

the setting is slightly different. See Appendix for the sketch of additional

arguments.

2. Random migration of non-contaminating individuals

In order to elaborate the distributions for S0
nm existing at the very be-

ginning of the outbreak we study the pure migration process, setting I1 ≡
0, I2 ≡ 0. In this case, the MC described in Table 1 can be split into two

independent processes: S1 ↔ S12 = N1 − S1, and S2 ↔ S21 = N2 − S2. For

each of them we have the following MC in terms of a single random variable

Sn, n = 1, 2:

Process Rate

Sn → Sn − 1 γSnmSn

Sn → Sn + 1 δSmn(Nn − Sn)

(10)

Introduce the notation

dkeN0 =





k, 0 ≤ k ≤ N

0, otherwise.
(11)

Let Pk(t) = P(Snm(t)=k) ≡ P(Sn(t)=Nn−k) be the probability distribu-

tion in node m at instant t. Then the Master/Kolmogorov’s equations take

the form

d

dt
Pk = γ

(
dN − k + 1eN0

)
Pk−1 − γ(N − k)Pk + δ

(
dk + 1eN0

)
Pk+1 − δkPk

(12)

12
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where 0 ≤ k ≤ N ; for the sake of simplicity we temporary set γ = γSnm,

δ = δSmn, N = Nn. Notation (11) makes enable us to write the equations for

k = 0 and k = N in the same form as the others.

For the probability generating function (PGF)

G(z, t) =
N∑

k=0

zkPk(t) (13)

equations (12) implies the following PDE

∂G

∂t
= (1− z)

[
(−γz − δ) ∂G

∂z
+ γN G

]
. (14)

The initial condition P0(0) = 1, Pk>1(0) = 0 implies

G(z, 0) = 1. (15)

The solution to problem (14)–(15) can be found explicitly

G(z, t) =

[
(γz + δ)− γ(z − 1)e−(γ+δ)t

γ + δ

]N
. (16)

Now one can calculate all the moments of distribution {Pk(t)}, say

ES(t) ≡ µ1(t) = Gz(1, t) = Nε
[
1− e−t/τ

]
(17)

var(S(t)) ≡ µ2(t) = Gzz(1, t) + µ1 − µ2
1 = µ1(t)

[
εe−t/τ + (1− ε)

]
(18)

where ε = γ/(γ + δ), τ = 1/(γ + δ).

If the migration process has been operating for enough time before the

outbreak starts, then the PGF takes its limiting form for t→∞

G(z,∞) = (εz + (1− ε))N

which is the MGF for a binomial distribution:

P(S0
nm = k) =

(
Nn

k

) (
εSnm
)k

(1− εSnm)Nn−k. (19)

13
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From here on we return to the indexed notation

εS,Inm =
γS,Inm

γS,Inm + δS,Imn
. (20)

This distribution has the following first two moments

S̄0
nm ≡ ES0

nm = µ1(∞) = εSnmNn (21)

var(S0
nm) = µ2(∞) = Nnε

S
nm(1− εSnm). (22)

The relative standard deviation (i.e. for the process X = Snm/S̄
0
nm) decays

as N
−1/2
n :

σS0
nm/S̄

0
nm

=

√
µ2(∞)

µ1(∞)
=

√
1− εSnm
εSnmNn

. (23)

Hence, when Nn → ∞, the migration process tends in probability to the

deterministic limit described in [12].

Thus, in the MC model defined in Table 1, the initial conditions S0
12

and S0
21 can be selected randomly from the binomial distribution (19) or

approximated by a Gaussian function if Nn is large enough.

Parameter εSnm := γSnm/(γ
S
nm + δSnm) = S̄0

nm/Nn indicates the mean share

of individuals from node n migrated to node m. Obviously this share, on

average, should be small for highly populated centers: considering a city for

example, half the population cannot realistically be found to visiting another

center for any reasonable period of time. Parameter εSnm can be treated as

a coupling parameter, that characterizes how intensive the migration fluxes

are between populated centers. Analogous fluxes of infectives are considered

unlikely to be more intensive, therefore εInm = γInm/(γ
I
nm + δInm) ≤ εSnm. So,

for highly populated centers, the following inequality holds

εS,Inm � 1⇐⇒ γS,Imn � δS,Inm. (24)

14
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The second important characteristic of the migration process is the char-

acteristic migration time τS,Inm = 1/(γS,Inm + δS,Inm). Eq. (17) implies that the

dynamic equilibrium establishes after the migration process started or if the

population changed suddenly at time t = 0, with a transitional time pro-

portional to τ . Both pairs of parameters: {γ, δ} and {ε, τ} are uniquely

related.

3. Direct numerical simulation of two interacting SIR centers

3.1. Numerical scheme

In the numerical simulation of the stochastic SIR model the time interval

was divided into small steps ∆t such that the sum of all rates from Table 1

multiplied by ∆t is essentially less than 1:

max
t
{νΣ(t)}∆t� 1 =⇒ ∆t = min {Pt/νΣ(t)} (25)

where Pt is the admitted threshold, say, Pt = 0.1 .

The probability that at least one event occurs in one unit of time is

bounded by the sum of rates of all the processes νΣ(t) =
∑16

i=1 νi :

νΣ(t) = β1 (I1 + I21) (S1 + S21) + β2 (I2 + I12) (S2 + S12)

+ α2(I2 + I12) + α1(I1 + I21)

+ γS12S1 + γI12I1 + δS21S12 + δI21I12 + γS21S2 + γI21I2 + δS21S12 + δI12I21.

In this relationship, we majorize I1, S1 ≤ N1, I2, S2 ≤ N2, I12, S12 ≤ N1,

15
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I21, S21 ≤ N2, then

max(νΣ) = (β1 + β2)(N1 +N2)2 + (α1 + α2)(N1 +N2)

+ (γS12 + γI12 + δI21 + δS21)N1 + (γS21 + γI21 + δI12 + δS12)N2

+ γS12S1 + γI12I1 + δS21S12 + δI21I12.

In fact, this value overestimates the realised total rate significantly, as it is

very improbable that the numbers of guest susceptibles and infectives in a

highly populated center exceeds the values εSnmNn and εInmNn, respectively,

where εS,Inm is defined in (19), in virtue of (24). For this reason we can account

that Snm . εSnmNn and Inm . εInmNn (and also use the rigorous inequalities

InSn ≤ 1
4
N2
n). Then we obtain the more realistic estimation:

max (νΣ) ' 1
4
β1N

2
1 + 1

4
β2N

2
2

+ β1

(
εI21 + εS21

)
N2N1 + β2

(
εI12 + εS12

)
N2N1

+ α1

(
N1 + εI21N2

)
+ α2

(
N2 + εI12N1

)

+
(
γS12 + γI12

)
N1 +

(
εS21δ

S
12 + εI21δ

I
12

)
N1

+
(
γS21 + γI21

)
N2 +

(
εS12δ

S
21 + εI12δ

I
21

)
N2

+ β1ε
I
21ε

S
21N2N1 + β2ε

I
12ε

S
12N2N1.

The following numerical scheme is used:

1. Assign the initial values to 8 variables

I1 = I0, S1 = N1−I0−S0
12, I12 = 0, S12 = S0

12,

I2 = 0, S2 = N2−S0
21, I21 = 0, S21 = S0

21

where S0
12, S

0
21 are random numbers distributed in accordance with (19).
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2. Calculate the current rates {νi, i = 1, . . . , 16} indicated in Table 1.

3. Calculate the current probability of at least one event occurrence in

accordance with eq. (25):

p = ∆t νΣ(t) ≡ ∆t
16∑

i=1

νi.

4. Generate uniformly distributed random number x ∈ [0, 1].

5. If x > p then no events occur. In this case:

(a) advance one step in time: t← t + ∆t without changing variables

I1, . . . , S21, also ν1, . . . , ν16 and p;

(b) if t > tmax terminate the process, otherwise go to step 4.

If x ≤ p then at least one event occurs. In this case:

(a) calculate the intervals ∆yi = [ηi−1, ηi], ηi =
∑i

j=1 νj;

(b) generate the second random number y uniformly distributed in

[0, η16];

(c) find in which interval y falls;

(d) perform the process described in Table 1 with the correspondent

rate;

(e) advance one step in time: t← t+ ∆t;

(f) if t > tmax terminate the process, otherwise go to step 2.

3.2. Numerical results

For numerical computation a basic model with two identical centers has

parameters: N1,2 = 104, α1,2 = 1, R01,2 = 4, εI,S1,2 = 0.01, τ I,S1,2 = 5 where

R01,2 = (β1,2/α1,2)N1,2 are the basic reproduction numbers for every center
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[16, 6]. The initial number of infectives in the first node I0 = i0N1 where

i0 = 0.01 is taken for the basic model.

A few realizations of numerical computation are depicted in Figure 1.

Here the time dependence of the total number of infectives IΣ
n = In + Imn in

every node are shown and compared with the curves based on integration of

the deterministic initial value problem (4)–(9).

0 2 4 6 8
0

200

400

600

800

Time

N
um

be
r 

of
 in

fe
ct

iv
es

Figure 1: Examples of realizations of two stochastic SIR models. The total number of

infectives is plotted in node 1 (IΣ
1 = I1+I21) by thin grey lines and in node 2 (IΣ

2 = I2+I12)

by thin black lines. Bold dashed lines indicates the hydrodynamic limit. (N1 = N2 = 2k,

Ro1 = Ro2 = 4, ε = 0.01, τ = 5, I0/N1 = 0.01).

In the first set of numerical experiments, the total population size varies

from N1 = N2 = N = 400 up to 106. In general, the number of realizations L

was taken L = 104 but L was selected greater for small populations N = 400

and 2000 and smaller for extremely high populations: 250k and 1000k. The

current mean number of total infectives ĪΣ
1,2(t) and standard deviation are

computed. The results of the first set are shown in Figure 2. Observe that

the mean value of the random process (solid lines) converges to the solution
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of the correspondent deterministic problem (bold dashed lines). But the

convergence is much slower for node 2: for N1 = 10k the mean trajectory

practically coincides with the deterministic limit, on the other side the same

effect in node 2 requires N21 ∼ 250k.

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

time

I/
N

 0.4

 0.4k

 2

 2k

 10

 10k
 50k 250k

0 1 2 3 4 5 6 7 8
0

0.1

time

st
d(

I/
N

)

 0.4k

 0.4k

 2k

 2k

 10k

 10k

 50k
 250k

Figure 2: Evolution of the mean values for IΣ
m/Nm m = 1, 2 (left) and their standard

deviations (right). Grey curves for node 1, black lines for node 2. Dashed lines indicate

the hydrodynamic limit described by eqs. (4)–(7). The node population is indicated near

the top of the correspondent curve.

The convergence rate is examined in Figure 3. One can see that for node 1

the convergence rate almost coincides with O(N−1/2), as for node 2 the decay

rate tends to O(N−1/2) only for sufficiently large population: N = 106. Thus,

for the secondary contaminated node, taking into account the stochastic

nature of the process is essential even if its population is large, provided that

the migration parameters εI,S1,2 are small (0.01 in this case). Say, if N2 = 400

the standard deviation exceeds the mean value, for all times up to the peak

outbreak.

In the second set of numerical experiments, we study the dependence of
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Figure 3: Maximal value of the standard deviation for processes I1/N1 and I2/N2 vs

population N = N1 = N2. Black curves for node 1, grey lines for node 2. The slope of

dashed line corresponds to the decay law N−1/2.

the mean number of infectives and their standard deviation from the initial

number of infectives I0 in node 1, varying from 1 to 100 (the share i0 = I0/N1

varies from 10−4 to 10−2). The results are plotted in Figure 4. Because the

time to the peak outbreak depends on the initial number of infectives, the

mean-field curves become quite different. Therefore it is appropriate to shift

the time so that the peak outbreaks for different initial conditions are at the

same instant, say, t = 0. Then all the curves are very close to each other

and practically coincide with the curve for the limiting solution introduced in

[3, 4]. Observe that the smaller the number of initial infectives, the greater

is the standard deviation (std) and the larger is the difference between the

mean curve for the random process and the mean-field curve. Also observe

that for node 1, the discrepancy of mean number of infectives from the mean-

field limit, as well as the standard deviation, monotonically decay with the

growth of I0. In node 2 the analogous discrepancy and the std slightly change

when the number of initial infective varies from 10 to 100.

In the third set of numerical experiments we study dependence of the

mean number of infectives on the coupling coefficient ε (the same for all
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Figure 4: Left: Mean values for IΣ
1 /N1 (black) and its standard deviation stdIΣ

1 /N1 (grey)

for different I0. The initial number of infectives in node 1 is indicated near the top of the

corresponding curve. Dashed line indicates the deterministic limiting solution. Right: the

same for IΣ
2 /N2.
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Figure 5: Maximal value of the standard deviation for I1/N1 and I2/N2 process vs popu-

lation I0 Grey curve is for node 1, black curve is for node 2. The dashed line has the slope

corresponding to the decay law N−1/2.

species). It was varied in the range 10−4, ..., 10−1. The results are plotted

in Figures 6 and 7. Observe that ε practically does not affect the standard

deviation of the total number of infectives in node 1. The discrepancy of the

mean curve from the mean-field curve becomes noticeable only for small ε:
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ε . 0.05.
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Figure 6: Mean values for IΣ
1 /N1 (left) and its standard deviations stdIΣ

1 /N1 (right) for

different migration coefficient ε. Dashed lines indicate the mean-field limit. The initial

number of infectives in node 1 is indicated near the top of the corresponding curve.
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Figure 7: Mean values for IΣ
2 /N2 (left) and its standard deviations stdIΣ

2 /N2 (right) for

different migration coefficient ε. Dashed lines indicate the mean-field limit. The initial

number of infectives in node 1 is indicated near the top of the corresponding curve.

As for the second node, the standard deviation grows monotonically with

a decrease in the coupling. That indicates the importance of accounting for
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the random elements of the epidemic process in the case of weak coupling

(i.e. in the case of relatively slow migration fluxes).
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Figure 8: Maximal value of the standard deviation for processes I1/N1 and I2/N2 vs

population N = N1 = N2. Grey curve is for node 1, black curve is for node 2. The dashed

line has the slope corresponding to the decay law N−1/2.
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Figure 9: Outbreak value for I1/N1 and I2/N2 processes vs population N = N1 = N2

Grey curve is for node 1, black curve is for node 2. The dashed line are for the mean-field

values.
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Table 2: MC model for a general network of interacting centers (m,n = 1, ...,M,m 6= n)

Process Rate

Sn → Sn−1, In → In+1 βn(In+
∑

mImn)Sn

Smn → Smn−1, Imn → Imn+1 βn(In+
∑

mImn)Smn

In → In−1 αnIn

Imn → Imn−1 αnImn

Sn → Sn−1, Snm → Snm+1 γSnmSn

In → In−1, Inm → Inm+1 γInmIn

Sn → Sn+1, Snm → Snm−1 δSmnSnm

In → In+1, Inm → Inm − 1 δImnInm

4. Two-stage semi-random model

The MC model for two coupled SIR centers can be readily generalized for

an arbitrary network of M mutually interacting SIR centers as described in

Table 2.

In general, to study migration fluxes (γS,Inm, δ
S,I
mn > 0) between every pair

of centers (of different rates) we have to consider 2M host and 2M(M − 1)

guest individuals. The correspondent MC model will contain 4M2 fluxes.

The total rate can be evaluated via νΣ = O(M2N2). Therefore for a network

containing a significant number of highly populated centers (say, main cities

within a country), the time interval ∆t will have to be taken extremely small,

and, hence, the CPU time for a single realization will be considerable, and

obtaining statistical properties across many realisations will be impractial.

Thus the MC requires an accurate simplification to proceed with numerical

modelling.
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4.1. The small initial contagion (SIC) approximation

The SIC approximation is based on the assumptions which appear rele-

vant for application in a network of highly populated centers:

• Population in every center is high: Nn � 1.

• Migration fluxes between the centers are small: εS,Inm � 1.

• Initial number of infectives in the first contaminated center (say, n = 1),

is small: I0 � N1.

• Reproduction number exceeds unity and is not very close to it in all

the nodes: R0n := βnNn/αn > 1 + r where r = O(1), r > 0.

Using these assumptions, the outbreak process in every center can be split

into the following main stages:

1. Contaminating stage: the number of infectives is small In � Nn, Sn ≈
Nn and the fluxes of infectives caused by migration are essential for the

outbreak process (excepting the first node).

2. Developed outbreak: In � 1, when the contribution of migration

fluxes is negligible (also the mean-field description for every individual

realization is adequate).

3. Recovering stage: the node is not affected by infective immigrants

and does not significantly affect contamination of other nodes.

It follows from these assumptions that the outbreak dynamics in the first

node can be considered independently, and can be described by the following
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MC

Process Rate

S1 → S1−1, I1 → I1+1 β1S1I1

I1 → I1−1 α1I1

(26)

with the initial condition I1(0) = I0, S1 = N1 − I0 studied in [6, 2]. At the

contamination stage we have S1 ≈ N1 and the MC can be further simplified

Process Rate

I1 → I1+1 (β1N1) I1

I1 → I1−1 α1I1

(27)

The epidemic dynamics in node 2 at the contamination stage (S2 ≈ N2)

can be described by an analogous MC with an additional flux ν(t) of infectives

migrated from node 1:

Process Rate

I2 → I2+1 (β2N2) I2 + ν(t)

I2 → I2−1 α2I2

(28)

with I2(0) = 0 where

ν(t) = (β2N2)I12 + δI12I21. (29)

At the contamination stage, processes I12(t) and I21(t) are practically

independent of process I2(t). Thus we have to consider MC (28) with a

random flux ν(t), the statistical properties of which will be specified later.

4.2. Calculation of moments

First, we consider a single realization of the flux ν(t) and treat it as a

deterministic function. Later we will use averaging on ν(t) to calculate the
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moments of the distribution for I2(t).

4.2.1. Calculation of PGF G(z, t) for a single realization

Let Pk(t) = P(I2(t) = k) be the probability of k infectives I2 at instant t.

The initial condition is

P0(0) = 1, Pk>0(0) = 0. (30)

Kolmogorov’s equations for MC (28) are

d
dt
Pk = β′2(dk − 1eN2

0 )Pk−1−β′2kPk+α2(dk + 1eN2

0 )Pk+1−α2kPk+νPk−1−νPk.
(31)

Here β′2 = β2N2. For the PGF G(z, t) tending N2 → ∞ (with β2 → 0,

β′2 = const) we obtain the following PDE

∂G

∂t
= (z − 1)

[
(β′2z − α2)

∂G

∂z
+ ν(t)G

]
(32)

with the initial condition G(z, 0) = 1. Its solution can be written in the

integral form

G(z, t) = exp
{
−
∫ t

0

λ2(z−1) ν (t′) dt′

β′2(z−1)− (β′2z−α2) eλ2(t′−t)

}
(33)

where λ2 = β′2−α2 ≡ α2 (R02−1) is the initial growth rate of infectives in the

deterministic SIR model in the limit I0/N → 0 (limiting solution introduced

in [3, 4]).

4.2.2. Calculation of first moment E [I2 (t)]

The first conditional moment µ1(t | ν) = E(I2(t) | ν) for fixed ν(t) is

µ1(t | ν) = Gz(1, t) =

∫ t

0

ν (t′) eλ2(t−t′)dt′. (34)
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Averaging over all realizations for ν(t) (with a time varying PDF fν(t)):

µ1(t) = Eµ1(t | ν)

µ1(t) =

∫ [ ∫ t

0

fν(t
′)ν (t′) eλ2(t−t′)dt′

]
dν =

∫ t

0

ν̄ (t′) eλ2(t−t′)dt′ (35)

where ν̄(t) = Eν(t). Thus the average number of infectives in node 2 at the

contamination stage relates with the flux ν(t) via the convolution

E [I2 (t)] ≡ µ1 (t) = ν̄ (t) ∗ eλ2t. (36)

4.2.3. Calculation of second moment var[I2(t)]

We apply the Law of Total Variation (e.g. [1]):

var [I2(t)] = E [var(I2(t) | ν)] + var [E(I2(t) | ν)] . (37)

1. The first addend in (37) can be found through the PGF G(z, t):

var(I2(t) | ν) = Gzz(1, t) + µ1(t | ν)− µ2
1(t | ν)

=
2β′2
λ2

∫ t

0

ν(t′)
[
e2λ2(t−t′) − eλ2(t−t′)

]
dt′ + µ1(t | ν).

After the averaging through ν we obtain

E [var(I2(t) | ν)] = µ1(t) +
2β′2
λ2

∫ t

0

ν̄(t′)
[
e2λ2(t−t′) − eλ2(t−t′)

]
dt′.

Thus the first addend in (37) can be written as a sum of two convolutions

E [var(I2(t) | ν)] =
2β′2
λ2

ν̄(t) ∗ e2λ2t + (1− 2β′2
λ2

)ν̄(t) ∗ eλ2t (38)

where ν̄(t) = β′2Ī12(t) + δI12Ī21(t).

2. To calculate the second addend in (37), we temporarily add µ2
1 to it.

Now it can be expressed via the covariance of flux ν(t):

var [E(I2(t) | ν)] + µ2
1(t) = E

(∫ t

0

ν (t′) eλ2(t−t′)dt′
)2

=

∫ t

0

∫ t

0

E [ν (t′) ν (t′′)] eλ2(t−t′)dt′eλ2(t−t′′)dt′′.

(39)
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The function in the integrand can be represented as the sum

E [ν (t′) ν (t′′)] = cov [ν (t′) , ν (t′′)] + ν̄(t′)ν̄(t′′). (40)

Integration of the second addend in (40) gives just the temporary added term
∫ t

0

∫ t

0

ν̄(t′)ν̄(t′′)eλ2(t−t′)dt′eλ2(t−t′′)dt′′ = µ2
1(t).

Thus the second addend in (37) can be written through the following integral

var
[
E
(
I2(t) | ν

)]
=

∫ t

0

∫ t

0

cov [ν (t′) , ν (t′′)] eλ2(t−t′)dt′eλ2(t−t′′)dt′′. (41)

in which we have to calculate the covariance of flux ν(t).

If flux ν(t) is a random process controlled by a MC, calculation of its

covariance is a complicated task, and consideration of this is outside the

scope of the present study. Remembering that the flux is a linear combination

of two MC processes (29): ν(t) = β′2I12(t) + δI12I21(t). Here we approximate

I12(t) and I21(t) by two mutually independent Poisson processes with variable

rates d
dt
Ī12(t) and d

dt
Ī21(t), respectively, where Ī12(t) and Ī21(t) are calculated

below. In this approximation, using the independence of increments of the

inhomogeneous Poisson flow (e.g. [18]) we can write

cov [I12 (t′) , I12 (t′′)] ≈ Ī12(min {t′, t′′}),

cov [I21 (t′) , I21 (t′′)] ≈ Ī21(min {t′, t′′}),

cov [I12 (t′) , I21 (t′′)] ≈ 0.

We justify this approximation numerically below. Thus, for the covari-

ance of the flux we have

cov [ν (t′) , ν (t′′)] = $(min {t′, t′′}), $(t) ≡ (β′2)
2
Ī12(t) +

(
δI12

)2
Ī21(t).

(42)
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Equation (42) holds true because the second central moment of the Poisson

process coincides with the first moment. In this approximation, it is sufficient

to compute the first moment of flux ν(t) in order to compute the second

moment for I2.

With the account for (42), we split integral (41) into two parts:

var
[
E
(
I2(t) | ν

)]
≈ J1 + J2

J1 =

∫ t

0

∫ t′

0

$(t′′)eλ2(t−t′′)dt′′eλ2(t−t′)dt′

J2 =

∫ t

0

∫ t

t′
$(t′)eλ2(t−t′′)dt′′eλ2(t−t′)dt′.

Integrating J1 by parts and J2 directly we find that they both give the same

answer

J1 = J2 =
1

λ2

$(t) ∗ e2λ2t − 1

λ2

$(t) ∗ eλ2t.

Finally, combining the above results we have

var(I2) =
4 (β′2)2

λ2

Ī12 ∗ e2λ2t +
[2β′2δ

I
12

λ2

+
2
(
δI12

)2

λ2

]
Ī21 ∗ e2λ2t

−
[4 (β′2)2

λ2

− β′2
]
Ī12 ∗ eλ2t −

[2β′2δ
I
12

λ2

+
2
(
δI12

)2

λ2

− δI12

]
Ī21 ∗ eλ2t.

(43)

4.2.4. Computation of the average flux ν̄(t)

It is natural to split the total flux into two parts ν(t) = β′2I12 + δI12I21 =

ν12(t) + ν21(t). Flux process ν12(t) described by the MC

Process Rate

I12 → I12+1 γI12I1

I12 → I12−1
(
δI21 + α2

)
I12

(44)
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(with I12(0) = 0) coincides with that described by (28) if we set β′2 ← 0,

ν(t) ← γI12I1, α2 ←
(
δI21 + α2

)
. Then we can immediately write down a

solution for the PGF

G(z, t) = exp
{
γI12 (z−1)

∫ t

0

I1 (t′) e−(δI21+α2)(t′−t)dt′
}

and the first moment

Ī12 = γI12

∫ t

0

Ī1 (t′) e−(δI21+α2)(t−t′)dt′. (45)

Flux process ν21 is more complicated and can be described by the follow-

ing MC

Process Rate

S21 → S21 + 1 γS21N2

S21 → S21 − 1 δS12S21

I21 → I21 + 1, S21 → S21 − 1 β1I1S21

I21 → I21 − 1 δI12I21

(46)

with the initial conditions S21(0) = εS21N2, I21(0) = 0. If we split the third

event into two independent events I21 → I21 + 1 and S21 → S21 − 1 with

the same rate, we can split MC (46) into two MCs. The first MC describes

migration of host susceptible individuals from node 2 to node 1 and their

possible removal due to contamination:

Process Rate

S21 → S21 + 1 γS21N2

S21 → S21 − 1
(
δS12 + β1I1

)
S21

(47)
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It is independent of the second MC with the rates

Process Rate

I21 → I21 + 1 β1I1S21

I21 → I21 − 1
(
δI12 + α1

)
I21

(48)

which describes migration of susceptibles to a neighbor node, their contami-

nation there and return to the host node as infected species.

We start with the first MC: see (47). In accordance with (19) it has the

binomial initial distribution:

Pk(0) =

(
N2

k

)(
εS21

)k (
1− εS21

)N2−k
. (49)

The probabilities Pk(t) = P(S21(t) = k) of k guest susceptibles S21 at instant

t satisfy Kolmogorov’s equations for MC (28)

d
dt
Pk = ν (Pk−1 − Pk) + α

[
(dk + 1eN2

0 )Pk+1 − kPk
]
. (50)

where ν = γS21N2, α =
(
δS12 + β1I1

)
. System (50) implies the following PDE

for MGF G(z, t) =
∑∞

k=0 z
kPk(t)

Gt = (z − 1) [−α(t)Gz + νG] . (51)

The initial condition is

G(z, 0) =
N∑

k=0

zk
(
N

k

)
εk(1− ε)N−k = (1− ε+ εz)N . (52)

The initial value problem (51)–(52) admits the explicit solution

G(z, t) = [1 + ε(z − 1)φ(t)]N exp

{
ν(z − 1)φ(t)

∫ t

0

dt′

φ(t′)

}
(53)
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where φ(t) = exp
{
−
∫ t

0
α(t′)dt′

}
. From here we have

ES21(t) = Gz(1, t) = N2

[
εS21 + γS21

∫ t

0

dt′/φ(t′)

]
φ(t). (54)

In analogy with processes (28) and (44) we can immediately write for process

(48)

Ī21 = β1

∫ t

0

e−(δI12+α2)(t−t′)E [I1 (t′)S21(t′)] dt′. (55)

Neglecting the mutual dependence of processes S21(t) and I1(t) we approximate

E [S21(t)I1(t)] ≈ ES21(t)Ī1(t). (56)

Thus the first moment Ī2 is calculated via (36) where ν̄ is given by (29)

in which Ī12 is given by (45) and Ī21 is given by (55)–(56), in turn ES21 is

calculated by (54) in which α(t) = δS12 + β1Ī1(t). The second moment is

calculated via sum of convolutions (43) of Ī12 and Ī21.

Below we show numerically that it is a satisfactory approximation for our

applications.

4.3. The second stage

Remember that equations (35), (41), (42), (43), (45), (55), (56) are valid

at the contamination stage only (S2 ≈ N2). These relationships allow us to

calculate the first and second moments for the number of infectives without

modelling the random process directly. To evaluate the moments at the

developed outbreak we use the same approach as in [2]: by approximating

the outbreak via the mean field solution for a single SIR node with random

initial conditions.
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For this aim, we define the intermediate time t∗ such that the number of

infective is large enough to use the mean field solution but the number of

infective still slightly deviate from N2: Î2(t∗)� 1 and N2 − Ŝ2 � N2.

Then we generate L times a random number X lognormally distributed

(to guarantee the positiveness) with mean Ī2(t∗) and variance var(I2(t∗)) and

integrate the classical SIR equations: d
dt
Ŝ2 = −β2Ŝ2Î2, d

dt
Î2 = (β2Ŝ2 − α2)Î2

with initial condition Î2(t∗) = X,

Ŝ2(t∗) = −W−1 [−β′2N2 exp {β′2(X −N2)}] /β′2

where Wk[·] is the kth branch of the Lambert function [19].

Let us emphasize that in the classical SIR model, the numbers of sus-

ceptives and infectives are related as I = N − S + ln [S/(N − I0)] /β′ where

β′ = βN (cf. [6]). Resolving this relation with respect to S we can write

S = −Wk [−β′(N − I0) exp {β′(I −N)}] /β′

where k = −1 for the growing part and k = 0 for the decaying part of the

outbreak. If the outbreak is triggered by a infinitesimal number of infectives

we can set S = −Wk [−β′N exp {β′(I −N)}] /β′.
Also note that it is natural to approximate the solution to a standard SIR

model by the limiting solution (I0/N → 0) introduced in [3]. The limiting

solution is independent of the initial condition, therefore it is not necessity

to integrate the ODEs L times, but only once.

Thus the proposed two-stage model of a coupled stochastic epidemic cen-

ters allows us to calculate its first moments much faster than the direct

simulation summarized in Table 1.
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4.4. Comparison with numerical simulation

To show the accuracy of the proposed model we compare the solutions

obtained by the different approaches. Again the basic model of Section 3 is

used: N1 = N2 = 10k, β′1,2 = 4, α1,2 = 1, εS,I1,2 = 0.01, τS,I1,2 = 5, I0/N1 = 0.01

but also model with the smaller population N1 = N2 = 2k. We compare (i)

the full stochastic model described in Table 1 which we regard as a bench-

mark; (ii) the SIC approximate stochastic model where only flux of infectives

from node 1 to node 2 is accounted, it is described in Table 3; (iii) the two-

stage semi-random model proposed in this section above.

In the two-stage model we take time t∗ = 2.0 for transition from a contam-

ination stochastic stage to the mean-field stage with random initial condition.

The expected number of infectives in node 2 at time t = 2.0 is 100 which is

large enough and at the same time much smaller than the node population.

We take L = 104 for number of realization in the second stage to evaluate

the moments.

In the SIC approximation, the stochastic model presented in Table 3 com-

prises four consequently independent MCs. Processes 1 and 2 represent an

independent outbreak in node 1 (26). Processes 3 and 4 represent migration

of its infectives to node 2 (44). Processes 5 and 6 represent migration of host

susceptives from node 2 to node 1 and their possible removal due to con-

tamination; they are analogous to MC (47) with N2 substituted by S2 to be

valid for all the stages. Similarly, processes 7 and 8 represent contamination

of S21 in the first node and migration of appeared infectives I21 to their host

node (48). Finally processes 9–10 represent the outbreak in node 2 ; they are

analogous to a MC with an additional flux (28), having an accurate account
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Table 3: MC for two interacting centers in the SIC approximation

i Process #i Rate

1 S1 → S1 − 1
I1 → I1 + 1

β1I1S1

2 I1 → I1 − 1 α1I1

3 I12 → I12 + 1 γI12I1

4 I12 → I12 − 1 δI21I12

5 S21 → S21 + 1 γS21S2

6 S21 → S21 − 1
(
δS12 + β1I1

)
S21

7 I21 → I21 + 1 β1I1S21

8 I21 → I21 − 1 α1I21

9 S2 → S2 − 1
I2 → I2 + 1

β2(I2 + I12)S2 + δI12I21

10 I2 → I2 − 1 α2I2

of the number of succeptives S2 at all the stages.

The results of the computations are presented in Figures 10 and 11. Here,

the bold lines indicate the full stochastic model, the thin solid lines indicate

the SIC approximated model, the line with dots indicate the two-stage semi-

random model. Also the mean-field solution is presented, and indicated by

dashed lines.

Evidently, the proposed two-stage semi-random model gives quite a sat-

isfactory approximation for the first two moments of the total number of

infectives in node 2 if the population is 10k but only qualitative similarity

for the smaller population. This justifies the used simplifications for rather

moderate populated sites, but for the sites with population 2k and smaller
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Figure 10: Comparison of different approximations for the mean value of infectives (left)

and its standard deviation (right) for the basic model: populations N1 = N2 = 10k,

migration parameters ε = 0.01, τ = 5, initial share of infectives I0/N1 = 0.01, number of

realisations in the simulations L = 104. Bold line – full stochastic model (Table 1), thin

line – approximate stochastic model (Table 2), line with dots – the proposed two-stage

semi-random model, dashed line – the mean field solution.
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Figure 11: The same as in Figure 10 but for N1 = N2 = 2k.

more sophisticated models should be developed. In would be interesting to

investigate the convergence of estimates for mean value of infectives obtained
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from the full and two-stage models. This can be a subject of consequent

works.

5. Discussion

We present a stochastic network of SIR models, coupled by random mi-

gration fluxes as described in terms of Markov chains. In the absence of

infectives, a pure migration of individuals is well described as a simple MC:

if disturbed, the system returns to a dynamic equilibrium exponentially fast,

in a manner that resembles a diffusion process in physics.

In the mean-field (hydrodynamic) limit, the MC converges to a non-

standard network SIR model: the host and guest species are treated sep-

arately in the corresponding ODEs (4)–(7).

A traditional approach to account for the coupling between the nodes is

to include transport terms into the equations (cf. [6, 20]):

d
dt
Sn = −βnSnIn + χSmnSm

d
dt
In = βnSnIn − αnIn + χImnIm.

(57)

Simple analysis shows that pure migration in the equations of type (57)

possesses inappropriate exponentially growing solutions [12]. This instability

is often ignored as it can be hidden in the background of the outbreak and

not be observable in certain epidemic model scenarios.

The model proposed in [21, 22]

d
dt
Sn = −βnSnIn + χSmnSm − χSnmSn

d
dt
In = βnSnIn − αnIn + χImnIm − χInmIn

gives more stable pure migration. However, a simple analysis shows that in

this model we obtain the fully mixed population in all the nodes [12] (ε = 0.5
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in our terms). Thus the dynamics of this model seems to be more realistic but

nevertheless does not satisfy an intuitive interpretation of the equilibrium of

the migration process.

Both above models are characterized by only one parameter describing

migration of a given species. This makes it impossible to tune the model to

obtain the realistic migration process in the absence of the outbreak.

In our earlier work [4] a migration model is introduced without splitting

species into host and guest, with two migration parameters: ε and τ describ-

ing migration process of a given species. But the model proposed in [4] also

does not give a completely satisfactory solution for pure migration in the

case of different migration times: τS12 and τS21 as shown in [12].

Though the effect of the more correct account of migration can be very

small for some combination of the epidemic and migration parameters, it can

become essential when parameters of the model vary in a wide range.

In the present work, three different techniques for the model under con-

sideration are compared: a MC describing the number of individuals from

all categories in both centers, its hydrodynamical limit in the form of a sys-

tem of dynamic equations and a simple description of contamination stage

at the node 2 as an isolated center with an inflow of infectives neglecting

the backward migration. In our approach, the random evolution on the

contamination stage either in its full or simplified form is coupled with the

dynamical description on the stage of saturation. This makes the problem

computationally feasible. Our intention is to apply this technique to a net-

work of interacting population centers in future work. Note that the direct

simulation of the network is extremely expensive in terms of the CPU time
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compared with integration of the dynamical equations. The computational

time may be considerably reduced if the simulation is required during a rel-

atively short contamination periods only.

The spatial structure of population is a key element in the understanding

of the large-scale spread of epidemics. The arrival of an infection and its

epidemic evolution are determined by the mobility processes among sub-

populations. The account of the movement of individuals has generated

a wealth of models and results (see [23, 24, 25, 26, 27, 28] and references

therein). In a number of papers, the evolution of an epidemic is described by a

deterministic reaction-diffusion equation (see [29, 30] and references therein).

Among important issue in the dynamics of directly transmitted diseases is

the relationship between infection rate and host density. Another important

aspect is the different dynamics of host and guest species on the epidemic

speed. For a purely deterministic model, the account of different dynamics

of host and guest species on the epidemic speed was studied in [12]. The

simplifying assumptions make the analysis tractable but may not adequately

reflect reality. It seems that a network of stochastically interacting centers

of the type discussed above may provide more realistic but still tractable

setting.

In the next paper we intend to derive the travelling wave characteristic

equation (cf. [3, 4, 12]) and explore analytically and numerically the depen-

dence of the mean epidemic speed and its standard deviation on the network

parameters.
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Appendix A. Sketch of the proof to Proposition 1.

First, the mean values of the Markov chain (MC) converges to the solution

of initial value problem (4)–(9) by the LLN. The phenomenological sketch

is given Section 1, and the rigorous proof is analogous to that presented in

[13, 17, 31].

We also must establish the convergence in probability. For definiteness

consider I2(t) and apply Chebyshev’s inequality for any ε > 0

P
(∣∣∣I2(t)

Λ
− Î2(t)

∣∣∣ > ε
)
≤ var [I2(t)]

Λ2ε2
.

Recall that Λ is the population scaling parameter (see Section 1). So, it is

enough to check that

var [I2(t)] = O(Λ), Λ→∞. (A.1)

This fact is demonstrated numerically in Section 3 (see Figure 3). Actually,

we see that the normalized standard deviation decays as N−1/2, or equiva-

lently, the non-normalized standard deviation grows as N1/2 (i.e., as Λ1/2),

that implies (A.1).

The rigorous argument runs as follows. Consider the processes in Table 1

which cause the change in number of infectives in node 2 and outline the

fluxes of infectives. These processes are

# Event Rate

9,16 I2 → I2 + 1 β2I2S2 + β2I12S2 + δI12I21

11,14 I2 → I2 − 1 α1I2 + γI21I2

(A.2)
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Here the flux terms are underlined, the remaining terms describe the MC

based stochastic SIR model [6, 2]. So the real flux can be defined as

ν(t) = β2I12S2 + δI12I21 − γI21I2.

We construct the process Ĩ2

Event Rate

Ĩ2 → Ĩ2 + 1 β′2Ĩ2 + ν̃

Ĩ2 → Ĩ2 − 1 α1Ĩ2

(A.3)

with the majorized constant flux

ν̃ = β′2N1 + δI12N2 ≥ ν(t).

Remind that β′2 = β2N2 is a constant when Λ→∞.

For this process we have a stochastic SI model (considered in [13]) with

the constant Poisson flux ν̃. This problem is solved in Section 4 and it is

shown that its variance grows as O(Λ).

Next, we establish the second order stochastic domination (see [32] for

details) of process I2(t) by Ĩ2(t). In fact the following inequality holds for all

x, t ≥ 0 (cf. [32])

∫ x

0

P
(
I2(t) ≥ u

)
du ≤

∫ x

0

P
(
Ĩ2(t) ≥ u

)
du.

The second order stochastic domination means that for any convex func-

tion Ψ(·) we have the inequality for all t ≥ 0

E[Ψ(I2(t))] ≤ E[Ψ(Ĩ2(t))],
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Ĩ2(t) is the number of susceptible in the tractable model described by (A.3).

In our case Ψ(X) = (X − EX)2. This implies the inequality var [I2(t)] ≤
var
[
Ĩ2(t)

]
. �
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