145 research outputs found

    Infestation by Ips amitinus (Eichhoff, 1872), Its Associated Fungi, and Butt Rots in Stands of Pinus sibirica in South-Western Siberia

    Get PDF
    : In 2019, the bark beetle Ips amitinus (native to central Europe) was identified in southwestern Siberia at a distance exceeding 2500 km east of its previously known easternmost location in the European part of Russia. In Siberia, its invasive populations are characterised by high abundance and harmfulness. Here, I. amitinus accomplishes primary attacks on standing vital trees of Pinus sibirica with a lethal outcome. This invasion has already resulted in massive dieback in stands of pine over a large geographic territory. By, 2021, the invaded area was estimated to cover at least 31,200 km2 . The objectives of this study were to investigate fungi associated with/vectored by I. amitinus in its invasive area in south-western Siberia and wood decay fungi that cause root and butt rots to P. sibirica. This led to the following conclusions: (i) DNA analysis of sixty adult beetles of Ips amitinus collected from P. sibirica in south-west Siberia revealed the presence of 143 fungal taxa; (ii) species richness was significantly higher in beetles collected from dead branches than from (more recently infested) dying branches; (iii) fungal communities were >90% dominated by yeasts, among which the most common were Nakazawaea holstii, Kuraishia molischiana, and N. ambrosiae; (iv) entomopathogenic Beauveria bassiana s.l. was the most common fungus isolated from dead/mycosed beetles of I. amitinus, followed by Lophium arboricola and four Ophiostoma spp.; and (v) Heterobasidion parviporum was the most common decay fungus detected, which was causing heart rot in stems of P. sibirica

    Assessment of fatigue damage to aircraft glass using digital holography methods

    Get PDF
    The purpose of this work is to test the digital holography method for determining the depth of fatigue surface defects of the "silver" type of aviation organic glass caused by cyclic mechanical overloads, as well as the impact of aggressive substances. To study the fatigue defects of aviation organic glass, a digital holographic camera was used, the configuration of which is an axial scheme for recording digital Gabor holograms. During the experiment, the possibility of using the digital holography method to determine the characteristic transverse dimensions of surface defects in aircraft glazing parts and longitudinal dimensions was shown. The work carried out and the created model of the digital holographic camera show the potential possibility of creating a method for checking with a given accuracy the elements of the aircraft glazing for the presence of surface damage and assessing their impact on flight safety

    Mutational signatures and mutable motifs in cancer genomes

    Get PDF
    Cancer is a genetic disorder, meaning that a plethora of different mutations, whether somatic or germ line, underlie the etiology of the ‘Emperor of Maladies’. Point mutations, chromosomal rearrangements and copy number changes, whether they have occurred spontaneously in predisposed individuals or have been induced by intrinsic or extrinsic (environmental) mutagens, lead to the activation of oncogenes and inactivation of tumor suppressor genes, thereby promoting malignancy. This scenario has now been recognized and experimentally confirmed in a wide range of different contexts. Over the past decade, a surge in available sequencing technologies has allowed the sequencing of whole genomes from liquid malignancies and solid tumors belonging to different types and stages of cancer, giving birth to the new field of cancer genomics. One of the most striking discoveries has been that cancer genomes are highly enriched with mutations of specific kinds. It has been suggested that these mutations can be classified into ‘families’ based on their mutational signatures. A mutational signature may be regarded as a type of base substitution (e.g. C:G to T:A) within a particular context of neighboring nucleotide sequence (the bases upstream and/or downstream of the mutation). These mutational signatures, supplemented by mutable motifs (a wider mutational context), promise to help us to understand the nature of the mutational processes that operate during tumor evolution because they represent the footprints of interactions between DNA, mutagens and the enzymes of the repair/replication/modification pathway

    Phylogenetic Relationships, Pathogenic Traits, and Wood-Destroying Properties of Porodaedalea niemelaei M. Fischer Isolated in the Northern Forest Limit of Larix gmelinii Open Woodlands in the Permafrost Area

    Get PDF
    The phytopathogenic and wood destroying traits were studied in a basidiomycete fungus, Porodaedalea niemelaei M. Fischer, widespread in Siberian permafrost woodlands of Gmelinii larch, Larix gmelinii (Rupr.) Rupr. Numerous stands of dying out and fallen larch trees with white-rot („corrosion rot“) were found in the study area. Butt rot incidence varied from 63 to 100 % depending on the stand age and raised up to 0.5-1.5 m above root collar on average or up to 9 m maximum. Root rot was also widespread, including larch undergrowth. The biodiversity of xylotrophic fungi was low, with a pronounced dominance of P. niemelaei. The main factors of dying out of L. gmelinii were infection by P. niemelaei promoted by mechanical damage of roots by reindeers during migration and climate anomalies. The cultures isolated from the fruiting bodies were identified as Porodaedalea niemelaei M. Fischer based on the combination of morphological, culture, and molecular genetic methods. Under laboratory conditions, the strains were characterized as psychrotolerant (temperature limit from 6 to 22 °C) and preferred cultural media based mostly on natural and plant substrates. The most active biodegradation occurred on the broadleaf wood substrates causing up to 50 % of the biomass loss accompanied by active decomposing of the lignocellulosic complex and increasing the amount of water-soluble substances. The phylogenetic analysis demonstrated that P. niemelaei is clearly different from other well-studied Porodaedalea species, such as P. chrysoloma, P. pini, and P. cancriformans, and is very close to a group of unclassified fungi isolated in Norway and Finland. The phylogenetic analysis included 43 isolates and was based on four genetic markers – ITS, nLSU, rpb2, and tef1, commonly used in fungal phylogenetic

    DNA polymerase η mutational signatures are found in a variety of different types of cancer

    Get PDF
    DNA polymerase (pol) η is a specialized error-prone polymerase with at least two quite different and contrasting cellular roles: to mitigate the genetic consequences of solar UV irradiation, and promote somatic hypermutation in the variable regions of immunoglobulin genes. Misregulation and mistargeting of pol η can compromise genome integrity. We explored whether the mutational signature of pol η could be found in datasets of human somatic mutations derived from normal and cancer cells. A substantial excess of single and tandem somatic mutations within known pol η mutable motifs was noted in skin cancer as well as in many other types of human cancer, suggesting that somatic mutations in A:T bases generated by DNA polymerase η are a common feature of tumorigenesis. Another peculiarity of pol ηmutational signatures, mutations in YCG motifs, led us to speculate that error-prone DNA synthesis opposite methylated CpG dinucleotides by misregulated pol η in tumors might constitute an additional mechanism of cytosine demethylation in this hypermutable dinucleotide

    Mismatch Repair–Independent Increase in Spontaneous Mutagenesis in Yeast Lacking Non-Essential Subunits of DNA Polymerase Δ

    Get PDF
    Yeast DNA polymerase Δ (Pol Δ) is a highly accurate and processive enzyme that participates in nuclear DNA replication of the leading strand template. In addition to a large subunit (Pol2) harboring the polymerase and proofreading exonuclease active sites, Pol Δ also has one essential subunit (Dpb2) and two smaller, non-essential subunits (Dpb3 and Dpb4) whose functions are not fully understood. To probe the functions of Dpb3 and Dpb4, here we investigate the consequences of their absence on the biochemical properties of Pol Δ in vitro and on genome stability in vivo. The fidelity of DNA synthesis in vitro by purified Pol2/Dpb2, i.e. lacking Dpb3 and Dpb4, is comparable to the four-subunit Pol Δ holoenzyme. Nonetheless, deletion of DPB3 and DPB4 elevates spontaneous frameshift and base substitution rates in vivo, to the same extent as the loss of Pol Δ proofreading activity in a pol2-4 strain. In contrast to pol2-4, however, the dpb3Δdpb4Δ does not lead to a synergistic increase of mutation rates with defects in DNA mismatch repair. The increased mutation rate in dpb3Δdpb4Δ strains is partly dependent on REV3, as well as the proofreading capacity of Pol ÎŽ. Finally, biochemical studies demonstrate that the absence of Dpb3 and Dpb4 destabilizes the interaction between Pol Δ and the template DNA during processive DNA synthesis and during processive 3â€Č to 5â€Čexonucleolytic degradation of DNA. Collectively, these data suggest a model wherein Dpb3 and Dpb4 do not directly influence replication fidelity per se, but rather contribute to normal replication fork progression. In their absence, a defective replisome may more frequently leave gaps on the leading strand that are eventually filled by Pol ζ or Pol ÎŽ, in a post-replication process that generates errors not corrected by the DNA mismatch repair system

    Treatment of toxic hepatitis in COVID-19 patients

    Get PDF
    Background. The article reflects the clinical significance of the early diagnosis of toxic hepatitis in patients who have undergone a new coronavirus infection with the determination of clinical and laboratory predictors of the response to therapy. A dynamic analysis of the effectiveness of toxic hepatitis therapy in patients of three experimental groups and a control group is presented. Aim. The aim of the present study is to increase the effectiveness of the treatment of toxic hepatitis in patients who have undergone COVID-19. Materials and methods. On the basis of the newly created infection centers of the Central Clinical Hospital RZhD-Medicine and Vishnevsky 3-rd Central Military Clinical Hospital 996 patients with COVID-19, who had clinical and laboratory signs of toxic liver damage (cytolytic and/or cholestatic syndromes) against the background of COVID-19 therapy. Results. On the 14th day from the start of therapy in group 3, there was a significant decrease in the clinical manifestations of jaundice in 163 (72.8%) patients, on the 21st day of treatment, this symptom was stopped in all patients. In groups 1 and 2, the decrease in clinical manifestations of jaundice was significantly lower 122 (55.2%) and 134 (58.8%); p0.05. At the end of therapy, no manifestations of jaundice were observed in all experimental groups, while in the control group, symptom reduction was achieved only in 47 (14.5%) patients. Conclusion. The use of drugs with hepatoprotective effect in the form of monotherapy in groups 1 (UDCA) and 2 (ademethionine) showed a low therapeutic effect with positive dynamics of clinical and laboratory indicators of toxic hepatitis activity. The use of combined treatment in group 3 (UDCA and ademethionine) demonstrated the maximum therapeutic effect, pronounced positive dynamics in the form of normalization of clinical and laboratory indicators of toxic hepatitis activity

    Higher-harmonic generation in boron-doped silicon from band carriers and bound-dopant photoionization

    Get PDF
    We investigate ultrafast harmonic generation (HG) in Si:B, driven by intense pump pulses with fields reaching 100 kV/cm and a carrier frequency of 300 GHz, at 4 K and 300 K, both experimentally and theoretically. We report several findings concerning the nonlinear charge carrier dynamics in intense sub-THz fields: (i) Harmonics of order up to n = 9 are observed at room temperature, while at low temperature we can resolve harmonics reaching at least n = 11. The susceptibility per charge carrier at moderate field strength is as high as for charge carriers in graphene, considered to be one of the materials with the strongest sub-THz nonlinear response. (ii) For T = 300 K, where the charge carriers bound to acceptors are fully thermally ionized into the valence subbands, the susceptibility values decrease with increasing field strength. Simulations incorporating multi-valence-band Monte Carlo and finite-difference-time-domain (FDTD) propagation show that here, the HG process becomes increasingly dominated by energy-dependent scattering rates over the contribution from band nonparabolicity, due to the onset of optical-phonon emission, which ultimately leads to the saturation at high fields. (iii) At T = 4 K, where the majority of charges are bound to acceptors, we observe a drastic rise of the HG yields for internal pump fields of 30 kV/cm, as one reaches the threshold for tunnel ionization. We disentangle the HG nonlinear response into contributions associated with the initial photoionization and subsequent motion in the bands, and show that intracycle scattering seriously degrades any contribution to HG emission from coherent recollision of the holes with their parent ions

    DNA methylation, deamination, and translesion synthesis combine to generate footprint mutations in cancer driver genes in B-cell derived lymphomas and other cancers

    Get PDF
    Cancer genomes harbor numerous genomic alterations and many cancers accumulate thousands of nucleotide sequence variations. A prominent fraction of these mutations arises as a consequence of the off-target activity of DNA/RNA editing cytosine deaminases followed by the replication/repair of edited sites by DNA polymerases (pol), as deduced from the analysis of the DNA sequence context of mutations in different tumor tissues. We have used the weight matrix (sequence profile) approach to analyze mutagenesis due to Activation Induced Deaminase (AID) and two error-prone DNA polymerases. Control experiments using shuffled weight matrices and somatic mutations in immunoglobulin genes confirmed the power of this method. Analysis of somatic mutations in various cancers suggested that AID and DNA polymerases η and Ξ contribute to mutagenesis in contexts that almost universally correlate with the context of mutations in A:T and G:C sites during the affinity maturation of immunoglobulin genes. Previously, we demonstrated that AID contributes to mutagenesis in (de)methylated genomic DNA in various cancers. Our current analysis of methylation data from malignant lymphomas suggests that driver genes are subject to different (de)methylation processes than non-driver genes and, in addition to AID, the activity of pols η and Ξ contributes to the establishment of methylation-dependent mutation profiles. This may reflect the functional importance of interplay between mutagenesis in cancer and (de)methylation processes in different groups of genes. The resulting changes in CpG methylation levels and chromatin modifications are likely to cause changes in the expression levels of driver genes that may affect cancer initiation and/or progression

    Fusarium: more than a node or a foot-shaped basal cell

    Get PDF
    Recent publications have argued that there are potentially serious consequences for researchers in recognising distinct genera in the terminal fusarioid clade of the family Nectriaceae. Thus, an alternate hypothesis, namely a very broad concept of the genus Fusarium was proposed. In doing so, however, a significant body of data that supports distinct genera in Nectriaceae based on morphology, biology, and phylogeny is disregarded. A DNA phylogeny based on 19 orthologous protein-coding genes was presented to support a very broad concept of Fusarium at the F1 node in Nectriaceae. Here, we demonstrate that re-analyses of this dataset show that all 19 genes support the F3 node that represents Fusarium sensu stricto as defined by F. sambucinum (sexual morph synonym Gibberella pulicaris). The backbone of the phylogeny is resolved by the concatenated alignment, but only six of the 19 genes fully support the F1 node, representing the broad circumscription of Fusarium. Furthermore, a re-analysis of the concatenated dataset revealed alternate topologies in different phylogenetic algorithms, highlighting the deep divergence and unresolved placement of various Nectriaceae lineages proposed as members of Fusarium. Species of Fusarium s. str. are characterised by Gibberella sexual morphs, asexual morphs with thin- or thick-walled macroconidia that have variously shaped apical and basal cells, and trichothecene mycotoxin production, which separates them from other fusarioid genera. Here we show that the Wollenweber concept of Fusarium presently accounts for 20 segregate genera with clear-cut synapomorphic traits, and that fusarioid macroconidia represent a character that has been gained or lost multiple times throughout Nectriaceae. Thus, the very broad circumscription of Fusarium is blurry and without apparent synapomorphies, and does not include all genera with fusarium-like macroconidia, which are spread throughout Nectriaceae (e.g., Cosmosporella, Macroconia, Microcera). In this study four new genera are introduced, along with 18 new species and 16 new combinations. These names convey information about relationships, morphology, and ecological preference that would otherwise be lost in a broader definition of Fusarium. To assist users to correctly identify fusarioid genera and species, we introduce a new online identification database, Fusarioid-ID, accessible at www.fusarium.org. The database comprises partial sequences from multiple genes commonly used to identify fusarioid taxa (act1, CaM, his3, rpb1, rpb2, tef1, tub2, ITS, and LSU). In this paper, we also present a nomenclator of names that have been introduced in Fusarium up to January 2021 as well as their current status, types, and diagnostic DNA barcode data. In this study, researchers from 46 countries, representing taxonomists, plant pathologists, medical mycologists, quarantine officials, regulatory agencies, and students, strongly support the application and use of a more precisely delimited Fusarium (= Gibberella) concept to accommodate taxa from the robust monophyletic node F3 on the basis of a well-defined and unique combination of morphological and biochemical features. This F3 node includes, among others, species of the F. fujikuroi, F. incarnatum-equiseti, F. oxysporum, and F. sambucinum species complexes, but not species of Bisifusarium [F. dimerum species complex (SC)], Cyanonectria (F. buxicola SC), Geejayessia (F. staphyleae SC), Neocosmospora (F. solani SC) or Rectifusarium (F. ventricosum SC). The present study represents the first step to generating a new online monograph of Fusarium and allied fusarioid genera (www.fusarium.org)
    • 

    corecore