32 research outputs found

    Nanomaterials and nanotechnology for sustainable energy

    Get PDF
    Upotreba nanotehnologija u cilju razvijanja načina proizvodnje održive energije je jedan od najznačajnijih izazova 21 veka. Izazov je dizajnirati, sintetizovati i izvršiti karakterizaciju novih funkcionalnih nanomaterijala kontrolisanih veličina, oblika i/ili struktura. Nanotehnologija danas privlači punu pažnju ne samo akademske zajednice, već i investitora, vlada i privrede a radi izgradnje i ostvarivanja velikih očekivanja. Ovaj rad istražuje moguću primenu nanotehnologija za nove i unaprijeđene metode pretvaranja energije, uvažavajući potrebe naše sredine. Njihova je jedinstvenost u tome što imaju mogućnost da fabrikuju nove structure na atomskom nivou, kao što su već proizvedeni novi materijali i uređaji sa mogućnošću visoko potencijalne primene u mnogo oblasti. Fokus je na bitnoj ulozi nanomaterijala, pripremi i karakterizaciji nekih nanomaterijala za proizvodnju održive energije, tankoslojnih solarnih ćelija u tehnologiji proizvodnje energije vodonikom.The use of nanotechnology to develop a suite of sustainable energy production schemes is one of the most important scientific challenges of the 21st century. The challenge is to design, to synthesize, and to characterize new functional nanomaterials with controllable sizes, shapes, and/or structures. Nanotechnology is generating a lot of attention these days and therefore building great expectations not only in the academic community but also among investors, the governments, and industry. This paper, explores some of the possible implementations of nanotechnology for new and improved methods of energy conversion, considering a need for this to be done without compromising our environment. Its unique capability to fabricate new structures at atomic scale has already produced novel materials and devices with great potential applications in a wide number of fields. Focus is given to important role of nanomaterials, preparation and characterization some of nanomaterials important for sustainable energy, dye sensitized solar cels and hydrogen production technology

    Nanomaterials and nanotechnology for sustainable energy

    Get PDF
    Upotreba nanotehnologija u cilju razvijanja načina proizvodnje održive energije je jedan od najznačajnijih izazova 21 veka. Izazov je dizajnirati, sintetizovati i izvršiti karakterizaciju novih funkcionalnih nanomaterijala kontrolisanih veličina, oblika i/ili struktura. Nanotehnologija danas privlači punu pažnju ne samo akademske zajednice, već i investitora, vlada i privrede a radi izgradnje i ostvarivanja velikih očekivanja. Ovaj rad istražuje moguću primenu nanotehnologija za nove i unaprijeđene metode pretvaranja energije, uvažavajući potrebe naše sredine. Njihova je jedinstvenost u tome što imaju mogućnost da fabrikuju nove structure na atomskom nivou, kao što su već proizvedeni novi materijali i uređaji sa mogućnošću visoko potencijalne primene u mnogo oblasti. Fokus je na bitnoj ulozi nanomaterijala, pripremi i karakterizaciji nekih nanomaterijala za proizvodnju održive energije, tankoslojnih solarnih ćelija u tehnologiji proizvodnje energije vodonikom.The use of nanotechnology to develop a suite of sustainable energy production schemes is one of the most important scientific challenges of the 21st century. The challenge is to design, to synthesize, and to characterize new functional nanomaterials with controllable sizes, shapes, and/or structures. Nanotechnology is generating a lot of attention these days and therefore building great expectations not only in the academic community but also among investors, the governments, and industry. This paper, explores some of the possible implementations of nanotechnology for new and improved methods of energy conversion, considering a need for this to be done without compromising our environment. Its unique capability to fabricate new structures at atomic scale has already produced novel materials and devices with great potential applications in a wide number of fields. Focus is given to important role of nanomaterials, preparation and characterization some of nanomaterials important for sustainable energy, dye sensitized solar cels and hydrogen production technology

    Possible approaches to LCA methodology for nanomaterials in sustainable energy production

    Get PDF
    Nanomaterijali imaju sve veću ulogu u brzo rastućoj oblasti održive proizvodnje energije. Pored dokazanih prednosti korišćenja nanomaterijala za inovacije u ovom domenu, njihov uticaj na životnu sredinu i zdravlje ljudi je još uvek nedovoljno ispitan. S tim u vezi, nalaženje odgovarajućih metoda za analizu, procjenu i tretman potencijalnih efekata primjene nanotehnologije na životnu sredinu i zdravlje ljudi je više nego neophodno. U ovom radu pokušaćemo da predstavimo kratak pregled moguće primjene procjene životnog ciklusa (LCA) na nanometerijale korišćene u određenim aplikcijama za održivu proizvodnju energije. Korišćenje ove metode bi takođe trebalo da pruži mogućnost za poređenje novih tehnologija sa već postojećim konvencionalnim tehnologijama u smislu njihovih uticaja na životnu sredinu, zdravlje i bezbjednost.Nano-engineered materials are playing an ever growing role in the rapidly developing field of sustainable energy production. Besides providing numerous opportunities for innovations in this domain, utilisation of nanostructured materials raises numerous doubts regarding their impact on the environment and possible adverse effects on human health. Providing reliable methods for analysis, evaluation and dealing with the environmental and health effects of nanotechnology is therefore crucial. In this article we will try to give an outline of possible approaches to deployment of Life Cycle Assessment (LCA) tools to nanomaterials used in certain applications for sustainable energy production. Use of such methods should also provide the possibility of comparing these new, emerging, technologies with that of already existing conventional ones in terms of their environmental, health and safety impacts

    Possible approaches to LCA methodology for nanomaterials in sustainable energy production

    Get PDF
    Nanomaterijali imaju sve veću ulogu u brzo rastućoj oblasti održive proizvodnje energije. Pored dokazanih prednosti korišćenja nanomaterijala za inovacije u ovom domenu, njihov uticaj na životnu sredinu i zdravlje ljudi je još uvek nedovoljno ispitan. S tim u vezi, nalaženje odgovarajućih metoda za analizu, procjenu i tretman potencijalnih efekata primjene nanotehnologije na životnu sredinu i zdravlje ljudi je više nego neophodno. U ovom radu pokušaćemo da predstavimo kratak pregled moguće primjene procjene životnog ciklusa (LCA) na nanometerijale korišćene u određenim aplikcijama za održivu proizvodnju energije. Korišćenje ove metode bi takođe trebalo da pruži mogućnost za poređenje novih tehnologija sa već postojećim konvencionalnim tehnologijama u smislu njihovih uticaja na životnu sredinu, zdravlje i bezbjednost.Nano-engineered materials are playing an ever growing role in the rapidly developing field of sustainable energy production. Besides providing numerous opportunities for innovations in this domain, utilisation of nanostructured materials raises numerous doubts regarding their impact on the environment and possible adverse effects on human health. Providing reliable methods for analysis, evaluation and dealing with the environmental and health effects of nanotechnology is therefore crucial. In this article we will try to give an outline of possible approaches to deployment of Life Cycle Assessment (LCA) tools to nanomaterials used in certain applications for sustainable energy production. Use of such methods should also provide the possibility of comparing these new, emerging, technologies with that of already existing conventional ones in terms of their environmental, health and safety impacts

    NANOTECHNOLOGY MATERIALS FOR SOLAR ENERGY CONVERSION

    Get PDF
    Nanotechnology is a common word these days, although only 15 years ago it was a quite obscure term used almost exclusively in scientific community.  It is a fact that nanotechnology is widely present today with numerous applications, especially regarding novel materials. This is a technology that draws a lot of attention not only in the scientific community but also among investors, governments and industry. There is a great deal of expectations connected with it and especially, amongst others, concerning sustainable energy production. This paper briefly explores some of possible implementations of nanotechnology for new and improved energy conversion methods, considering a need for this to be done without doing harm to our environment. Focus is placed on advanced photovoltaic and hydrogen production technology.Nanotechnology is a common word these days, although only 15 years ago it was a quite obscure term used almost exclusively in scientific community.  It is a fact that nanotechnology is widely present today with numerous applications, especially regarding novel materials. This is a technology that draws a lot of attention not only in the scientific community but also among investors, governments and industry. There is a great deal of expectations connected with it and especially, amongst others, concerning sustainable energy production. This paper briefly explores some of possible implementations of nanotechnology for new and improved energy conversion methods, considering a need for this to be done without doing harm to our environment. Focus is placed on advanced photovoltaic and hydrogen production technology

    Machine Learning Classification of Cervical Tissue Liquid Based Cytology Smear Images by Optomagnetic Imaging Spectroscopy

    Get PDF
    Semi-automated system for classification of cervical smear images based on Optomagnetic Imaging Spectroscopy (OMIS) and machine learning is proposed. Optomagnetic Imaging Spectroscopy has been applied to screen 700 cervical samples prepared according to Liquid Based Cytology (LBC) principles and to record spectra of the samples. Peak intensities and peak shift frequencies from the spectra have been used as features in classification models. Several machine learning algorithms have been tested and results of classification have been compared. Results suggest that the presented approach can be used to improve standard LBC screening tests for cervical cancer detection. Developed system enables detection of pre-cancerous and cancerous states with sensitivity of 79% and specificity of 83% along with AUC (ROC) of 88% and could be used as an improved alternative procedure for cervical cancer screening. Moreover, this can be achieved via portable apparatus and with immediately available results

    Machine Learning Classification of Cervical Tissue Liquid Based Cytology Smear Images by Optomagnetic Imaging Spectroscopy

    Get PDF
    Semi-automated system for classification of cervical smear images based on Optomagnetic Imaging Spectroscopy (OMIS) and machine learning is proposed. Optomagnetic Imaging Spectroscopy has been applied to screen 700 cervical samples prepared according to Liquid Based Cytology (LBC) principles and to record spectra of the samples. Peak intensities and peak shift frequencies from the spectra have been used as features in classification models. Several machine learning algorithms have been tested and results of classification have been compared. Results suggest that the presented approach can be used to improve standard LBC screening tests for cervical cancer detection. Developed system enables detection of pre-cancerous and cancerous states with sensitivity of 79% and specificity of 83% along with AUC (ROC) of 88% and could be used as an improved alternative procedure for cervical cancer screening. Moreover, this can be achieved via portable apparatus and with immediately available results

    Multivariate analysis and self organizing feature maps applied for data analysis of opto-magnetic spectra of water

    Get PDF
    Kako bi se došlo do novih saznanja u vezi strukture vode u tečnom stanju, kao i interakcija između rastvorenih materija i molekula vode korišćena je nova metoda bazirana na upotrebi opto-magnetne imidžing spektroskopije (OMIS). U pitanju je metoda bazirana na interakciji vidljive svetlosti i materije, koja omogućava detekciju odnosa električnih i magnetnih sila hemijskih veza, te daje podatke kako o klasičnim tako i kvantnim dejstvima između molekula vode i drugih materija u njoj rastvorenih. U ovom radu su za ekstrakciju i analizu podataka, dobijenih upotrebom OMIS, korišćene multivarijantna analiza i neuronske mreže. Ovim pristupom smo pokušali da izvršimo karakterizaciju i diskriminaciju različitih voda sa posebnim interesovanjem za njihove para- i dija- magnetne osobine koje ukazuju na samoorganizaciju (klasterizaciju) molekula vode. Pokazano je da upotreba OMIS paralelno sa tehnikama multivarijantne analize i neuronskih mreža može uspešno biti upotrebljena za karakterizaciju voda sa aspekta njihove strukturalne organizacije.To obtain new knowledge about structure of liquid water and interaction between constituents in water and water molecules a new approach has been attempted using Opto-magnetic imaging spectroscopy (OMIS), a method based on a light-matter interaction. Opto-magnetic imaging spectroscopy is a novel method which takes into account a ratio of electrical and magnetic forces of chemical bonds, and therefore collects data of both classical and quantum actions of water molecules and other constituents. Here, we used OMIS combined with techniques of multivariate analysis and neural networks to extract data from spectra of different waters. We have investigated this method for characterization and discrimination of different waters with special interest in para- diamagnetic properties which can give clues about organization of water molecules. It is shown that the use of OMIS together with multivariate techniques and neural networks approach can be proved as a valuable asset in characterizing water from the aspect of its structural organization

    Multivariate analysis and self organizing feature maps applied for data analysis of opto-magnetic spectra of water

    Get PDF
    Kako bi se došlo do novih saznanja u vezi strukture vode u tečnom stanju, kao i interakcija između rastvorenih materija i molekula vode korišćena je nova metoda bazirana na upotrebi opto-magnetne imidžing spektroskopije (OMIS). U pitanju je metoda bazirana na interakciji vidljive svetlosti i materije, koja omogućava detekciju odnosa električnih i magnetnih sila hemijskih veza, te daje podatke kako o klasičnim tako i kvantnim dejstvima između molekula vode i drugih materija u njoj rastvorenih. U ovom radu su za ekstrakciju i analizu podataka, dobijenih upotrebom OMIS, korišćene multivarijantna analiza i neuronske mreže. Ovim pristupom smo pokušali da izvršimo karakterizaciju i diskriminaciju različitih voda sa posebnim interesovanjem za njihove para- i dija- magnetne osobine koje ukazuju na samoorganizaciju (klasterizaciju) molekula vode. Pokazano je da upotreba OMIS paralelno sa tehnikama multivarijantne analize i neuronskih mreža može uspešno biti upotrebljena za karakterizaciju voda sa aspekta njihove strukturalne organizacije.To obtain new knowledge about structure of liquid water and interaction between constituents in water and water molecules a new approach has been attempted using Opto-magnetic imaging spectroscopy (OMIS), a method based on a light-matter interaction. Opto-magnetic imaging spectroscopy is a novel method which takes into account a ratio of electrical and magnetic forces of chemical bonds, and therefore collects data of both classical and quantum actions of water molecules and other constituents. Here, we used OMIS combined with techniques of multivariate analysis and neural networks to extract data from spectra of different waters. We have investigated this method for characterization and discrimination of different waters with special interest in para- diamagnetic properties which can give clues about organization of water molecules. It is shown that the use of OMIS together with multivariate techniques and neural networks approach can be proved as a valuable asset in characterizing water from the aspect of its structural organization

    Zubni kamenac - karakterizacija na nanonivou

    Get PDF
    Emerging technologies and new nanoscale information have potential to transform dental practice by improving all aspects of diagnostics and therapy. Nanocharacterization allows understanding of oral diseases at molecular and cellular levels which eventually can increase the success of prevention and treatment. Opto-magnetic spectroscopy (OMS) is a promising new technique based on light-matter interaction which allows insight into the quantum state of matter. Since biomolecules and tissues are usually paramagnetic or diamagnetic materials it is possible to determine the dynamics of para-and diamagnetism at different teeth structures using that method. The topography of the surface of a sample can be obtained with a very high resolution using atomic force microscopy (AFM), which allows observation of minimal changes up to 10 nm, while magnetic force microscopy (MFM) is used to record the magnetic field gradient and its distribution over the surface of a sample. The aim of this study was to determine the possibility of AFM and MFM for the characterization of dental calculus, and a potential application of OMS for the detection of subgingival dental calculus.Inovativne tehnologije i nove informacije na nanonivou imaju potencijal da poboljšaju stomatološku praksu, unapređujući sve aspekte dijagnostike i terapije. Nanokarakterizacija omogućava razumevanje razvoja oboljenja na ćelijskom i molekularnom nivou, što za krajnji rezultat može imati poboljšanje prevencije i uspeha lečenja. Optomagnetna spektroskopija (engl. opto-magnetic spectroscopy - OMS) je nova tehnika koja obećava, a zasnovana je na interakciji svetlosti i materije koja omogućava uvid u kvantno stanje materije. S obzirom na to da biomolekuli i tkiva mogu ispoljavati osobine paramagnetičnosti, odnosno dijamagnetičnosti, ovom metodom moguće je utvrditi dinamiku paramagnetizma i dijamagnetizma na različitim strukturama zuba. Pomoću mikroskopije atomskih sila (engl. atomic force microscopy - AFM) moguće je dobiti topografiju površine uzorka vrlo visoke rezolucije, čime se uočavaju i najmanje promene sve do 10 nm, dok se mikroskopija magnetnih sila (engl. magnetic force microscopy - MFM) koristi za snimanje gradijenta magnetnog polja i njegove raspodele po površini uzorka. Cilj ovog rada bio je da prikaže mogućnosti primene AFM i MFM za karakterizaciju zubnog kamenca, kao i primene OMS za otkrivanje subgingivalnog kalkulusa
    corecore