14 research outputs found

    Aurophilic Interactions of Dimeric Bisphosphine Gold(I) Complexes Pre-Organized by the Structure of the 1,5-Diaza-3,7-Diphosphacyclooctanes

    No full text
    The dimeric gold(I) chloride and gold(I) iodide complexes ([L2Au]Cl2 and L2AuI2) on the scaffold of the cyclic bisphosphine, namely 1,5-diaza-3,7-diphosphacyclooctane containing α-phenylbenzyl (benzhydryl) substituents at the nitrogen atoms, were synthesized. The obtained complexes were isolated as white crystalline powders. The single crystal XRD of the obtained complexes revealed the strong aurophilic interactions between two gold(I) atoms with the Au…Au distance values of 2.9977(6) and 3.1680(5) Å. The comparison of the gold complexes, based on the N,N-diaryl- and N,N-dibenzhydryl substituted 1,5-diaza-3,7-diphosphacyclooctanes, allowed to reveal the strong impact of the initial heterocycle conformation on the realization of the aurophilic interactions, where the geometry of N,N-dibenzhydryl substituted 1,5-diaza-3,7-diphosphacyclooctane, is pre-organized for the intramolecular aurophilic interactions of the complexes. The obtained complexes exhibit a bluish-green phosphorescence (λem 505 (-Cl) and 530(-I)) in the solid state at room temperature, originated by the metal-halide centered transitions, which was confirmed by the TDDFT calculations. It was found that the aurophilic interactions are realized in the ground and in the triplet excited states of the complexes. The slighter change of the geometry of the N,N-dibenzhydryl substituted gold(I) iodide complexes, under the transition from the ground state to the excited state, in comparison with their N,N-diaryl substituted analogues, results in the reduced values of the Stokes shift of luminescence (ca. 150 nm vs. 175 nm)

    Synthesis and Structure of Iron (II) Complexes of Functionalized 1,5-Diaza-3,7-Diphosphacyclooctanes

    No full text
    In order to synthesize new iron (II) complexes of 1,5-diaza-3,7-diphosphacyclooctanes with a wider variety of the substituents on ligands heteroatoms (including functionalized ones, namely, pyridyl groups) and co-ligands, it was found that these ligands with relatively small phenyl, benzyl, and pyridin-2-yl substituents on phosphorus atoms in acetonitrile formed bis-P,P-chelate cis-complexes [L2Fe(CH3CN)2]2+ (BF4)2−, whereas P-mesityl-substituted ligand formed only monoligand P,P-complex [LFe(CH3CN)4]2+ (BF4)2−. 3,7-dibenzyl-1,5-di(1′-(R)-phenylethyl)-1,5-diaza-3,7-diphosphacyclooctane reacted with hexahydrate of iron (II) tetrafluoroborate in acetone to give an unusual bis-ligand cationic complex of the composition [L2Fe(BF4)]+ BF4−, where two fluorine atoms of the tetrafluoroborate unit occupied two pseudo-equatorial positions at roughly octahedral iron ion, according to X-ray diffraction data. 1,5-diaza-3,7-diphosphacyclooctanes replaced tetrahydrofurane and one of the carbonyl ligands of cyclopentadienyldicarbonyl(tetrahydrofuran)iron (II) tetrafluoroborate to form heteroligand complexes [CpFeL(CO)]+BF4−. The structural studies in the solid phase and in solutions showed that diazadiphosphacyclooctane ligands of all complexes adopted chair-boat conformations so that their nitrogen atoms were in close proximity to the central iron ion. The redox properties of the obtained complexes were performed by the cyclic voltammetry method

    Green Emissive Copper(I) Coordination Polymer Supported by the Diethylpyridylphosphine Ligand as a Luminescent Sensor for Overheating Processes

    No full text
    Tertiary diethylpyridylphosphine was synthesized by the reaction of pyridylphosphine with bromoethane in a suberbasic medium. The reaction of phosphine with the copper(I) iodide led to the formation of a copper(I) coordination polymer, which, according to the X-ray diffraction data, has an intermediate structure with a copper-halide core between the octahedral and stairstep geometries of the Cu4I4 clusters. The obtained coordination polymer exhibits a green emission in the solid state, which is caused by the 3(M+X)LCT transitions. The heating up of the copper(I) coordination polymer to 138.5 °C results in its monomerization and the formation of a new solid-state phase. The new phase exhibits a red emission, with the emission band maximum at 725 nm. According to the experimental data and quantum chemical computations, it was concluded that depolymerization probably leads to a complex that is formed with the octahedral structure of the copper-halide core. The resulting solid-state phase can be backward-converted to the polymer phase via recrystallization from the acetone or DMF. Therefore, the obtained coordination polymer can be considered a sensor or detector for the overheating of processes that should be maintained at temperatures below 138 °C (e.g., engines, boiling liquids, solar heat systems, etc.)
    corecore