38 research outputs found

    Human ClC-6 Is a Late Endosomal Glycoprotein that Associates with Detergent-Resistant Lipid Domains

    Get PDF
    BACKGROUND: The mammalian CLC protein family comprises nine members (ClC-1 to -7 and ClC-Ka, -Kb) that function either as plasma membrane chloride channels or as intracellular chloride/proton antiporters, and that sustain a broad spectrum of cellular processes, such as membrane excitability, transepithelial transport, endocytosis and lysosomal degradation. In this study we focus on human ClC-6, which is structurally most related to the late endosomal/lysomal ClC-7. PRINCIPAL FINDINGS: Using a polyclonal affinity-purified antibody directed against a unique epitope in the ClC-6 COOH-terminal tail, we show that human ClC-6, when transfected in COS-1 cells, is N-glycosylated in a region that is evolutionary poorly conserved between mammalian CLC proteins and that is located between the predicted helices K and M. Three asparagine residues (N410, N422 and N432) have been defined by mutagenesis as acceptor sites for N-glycosylation, but only two of the three sites seem to be simultaneously N-glycosylated. In a differentiated human neuroblastoma cell line (SH-SY5Y), endogenous ClC-6 colocalizes with LAMP-1, a late endosomal/lysosomal marker, but not with early/recycling endosomal markers such as EEA-1 and transferrin receptor. In contrast, when transiently expressed in COS-1 or HeLa cells, human ClC-6 mainly overlaps with markers for early/recycling endosomes (transferrin receptor, EEA-1, Rab5, Rab4) and not with late endosomal/lysosomal markers (LAMP-1, Rab7). Analogously, overexpression of human ClC-6 in SH-SY5Y cells also leads to an early/recycling endosomal localization of the exogenously expressed ClC-6 protein. Finally, in transiently transfected COS-1 cells, ClC-6 copurifies with detergent-resistant membrane fractions, suggesting its partitioning in lipid rafts. Mutating a juxtamembrane string of basic amino acids (amino acids 71-75: KKGRR) disturbs the association with detergent-resistant membrane fractions and also affects the segregation of ClC-6 and ClC-7 when cotransfected in COS-1 cells. CONCLUSIONS: We conclude that human ClC-6 is an endosomal glycoprotein that partitions in detergent resistant lipid domains. The differential sorting of endogenous (late endosomal) versus overexpressed (early and recycling endosomal) ClC-6 is reminiscent of that of other late endosomal/lysosomal membrane proteins (e.g. LIMP II), and is consistent with a rate-limiting sorting step for ClC-6 between early endosomes and its final destination in late endosomes

    A Cytoplasmic Domain Mutation in ClC-Kb Affects Long-Distance Communication Across the Membrane

    Get PDF
    BACKGROUND: ClC-Kb and ClC-Ka are homologous chloride channels that facilitate chloride homeostasis in the kidney and inner ear. Disruption of ClC-Kb leads to Bartter's Syndrome, a kidney disease. A point mutation in ClC-Kb, R538P, linked to Bartter's Syndrome and located in the C-terminal cytoplasmic domain was hypothesized to alter electrophysiological properties due to its proximity to an important membrane-embedded helix. METHODOLOGY/PRINCIPAL FINDINGS: Two-electrode voltage clamp experiments were used to examine the electrophysiological properties of the mutation R538P in both ClC-Kb and ClC-Ka. R538P selectively abolishes extracellular calcium activation of ClC-Kb but not ClC-Ka. In attempting to determine the reason for this specificity, we hypothesized that the ClC-Kb C-terminal domain had either a different oligomeric status or dimerization interface than that of ClC-Ka, for which a crystal structure has been published. We purified a recombinant protein corresponding to the ClC-Kb C-terminal domain and used multi-angle light scattering together with a cysteine-crosslinking approach to show that the dimerization interface is conserved between the ClC-Kb and ClC-Ka C-terminal domains, despite the fact that there are several differences in the amino acids that occur at this interface. CONCLUSIONS: The R538P mutation in ClC-Kb, which leads to Bartter's Syndrome, abolishes calcium activation of the channel. This suggests that a significant conformational change--ranging from the cytoplasmic side of the protein to the extracellular side of the protein--is involved in the Ca(2+)-activation process for ClC-Kb, and shows that the cytoplasmic domain is important for the channel's electrophysiological properties. In the highly similar ClC-Ka (90% identical), the R538P mutation does not affect activation by extracellular Ca(2+). This selective outcome indicates that ClC-Ka and ClC-Kb differ in how conformational changes are translated to the extracellular domain, despite the fact that the cytoplasmic domains share the same quaternary structure

    Long term compressive testing of masonry - Test procedure and practical experience

    No full text
    The sudden collapses in Italy (Civic Tower of Pavia 1989, Noto Cathedral, 1996) initiated the research into long term behaviour of historical masonry structures. Last decade, international ad hoc collaboration was established within several research institutes in Europe. The testing on masonry samples identified the creep behaviour as a possible cause of the collapse of historical masonry buildings. Secondly, research focused on the study of the factors affecting creep (rate of loading, stress level...) and efforts were made to set up the most suitable testing procedures to understand the phenomenon. The gained insight in the long term behaviour and its description by means of rheological models, is validated mainly by means of long term testing, identifying significant parameters (strain rate of secondary creep phase, damage parameters...). This contribution merges the ample experiences gathered over a period of more than 15 years and drafts a first guideline for a common description of the test setup, testing procedure, data-acquisition and -processing.The financial support provided by the Portuguese Science and Technology Foundation through the POCI/ECM/58987/2004 project is gratefully acknowledged. The authors of KULeuven express their thanks to the Flemish Fund for Scientific Research (FWO) for the doctoral grant, offered to Els Verstrynge and highly appreciate the mutual collaboration with the different research institutes within this research area

    A Unique Arabinose 5-Phosphate Isomerase Found within a Genomic Island Associated with the Uropathogenicity of Escherichia coli CFT073 â–¿

    No full text
    Previous studies showed that deletion of genes c3405 to c3410 from PAI-metV, a genomic island from Escherichia coli CFT073, results in a strain that fails to compete with wild-type CFT073 after a transurethral cochallenge in mice and is deficient in the ability to independently colonize the mouse kidney. Our analysis of c3405 to c3410 suggests that these genes constitute an operon with a role in the internalization and utilization of an unknown carbohydrate. This operon is not found in E. coli K-12 but is present in a small number of pathogenic E. coli and Shigella boydii strains. One of the genes, c3406, encodes a protein with significant homology to the sugar isomerase domain of arabinose 5-phosphate isomerases but lacking the tandem cystathionine beta-synthase domains found in the other arabinose 5-phosphate isomerases of E. coli. We prepared recombinant c3406 protein, found it to possess arabinose 5-phosphate isomerase activity, and characterized this activity in detail. We also constructed a c3406 deletion mutant of E. coli CFT073 and demonstrated that this deletion mutant was still able to compete with wild-type CFT073 in a transurethral cochallenge in mice and could colonize the mouse kidney. These results demonstrate that the presence of c3406 is not essential for a pathogenic phenotype
    corecore